Bras robotique – Prototype 1

Cet article présente la réalisation du prototype des bras robotiques qui équipent l’atelier de la Batcave du projet BATLab112. L’objectif de ce prototype est de permettre la validation de la conception du design général ainsi que le choix de fabrication par impression 3D.


Modélisation 3D

Logiciel de CAO 3D

La modélisation 3D des bras robotiques de la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCad V0.17.

Des bras robotiques à 4 degrés de liberté

Les bras robotiques disposent de 4 degrés de liberté, autrement dit 4 articulations. Un moteur installé dans chaque articulation en assure sa rotation.


Fabrication

Impression 3D des pièces mécaniques

Les impressions 3D des premières pièces de ce prototype sont réalisées par Paul membre de la communauté de soutien du projet BATLab112, avec une imprimante ANET A8.

Motorisation des articulations

Le choix des moteurs équipant les articulations est déterminant en terme de performance pour les bras robotiques en termes de vitesse et de fluidité des mouvements. Les moteurs sélectionnés pour la réalisation de cette première version sont des servomoteurs.

Servomoteurs

Qualification de ce choix

Avantages

Alimentation électrique en courant continu
- Intégration technique facilité
- Compatibilité avec l'électronique de commande (Arduino notamment)
Asservissement en position angulaire
- Commande simplifiée
- Conforme avec la logique mécanique des articulations
Maintien de la position
- Commande simplifiée
Dimensions réduites
- Intégration mécanique facillité
Approvisionnement et coût

Inconvénients

Technologie
Cette technologie n'est pas conforme avec celle des robots industriels. Cet aspect sera pris en compte dans une futur version
Couple
Capacité incertaine à assurer le mouvement

Voir le calcul de masses en fonction du couple

Tests de fonctionnement

Electronique de commande

Ce test de fonctionnement utilise une électronique de commande décrite dans l’article suivant :

Commande du bras robotique .V1

Présentation de la réalisation de la première version de l’électronique de commande des bras robotisés équipant l’atelier de la Batcave du projet BATLab112.

Pour valider cette électronique de commande, une maquette du bras robotique a été réalisée en emballage alimentaire. Le résultat obtenu est plutôt satisfaisant, compte tenu d’un niveau passable de qualité de fabrication, comme le montre la vidéo suivante.

Alimentation électrique

Le circuit d’alimentation électrique utilisé est le même que celui pour valider la commande électronique. Ce circuit est constitué des composants suivants :

Un convertisseur 230VAC / 12VDC – 180 W pour l’alimentation électrique des 2 convertisseurs suivants.

Source : www.amazon.fr

Un convertisseur 12V DC / 5V DC – 50W pour l’alimentation électrique de l’électronique de commande et de la carte Arduino Due.

Source : www.amazon.fr

Un convertisseur 12VDC / 6VDC – 60W pour l’alimentation électrique des 4 servomoteurs.

Source : www.amazon.fr

Test fonctionnel mécanique

Configuration mécanique

Le montage utilisé comprend la tourelle et l’épaule en impression 3D associé uniquement au bras, réalisé en emballage alimentaire.

Résultats

Les résultats des premiers tests sont plutôt décevants. Le bras entre en oscillation très rapidement.
Plusieurs pistes sont à explorer pour résoudre ce problème :
– Le découplage de l’alimentation électrique des servomoteurs.
– La modification de la fréquence des signaux PWM émis par la carte Arduino.
– Le changement du servomoteur de l’épaule.

A suivre !…

Commande du bras robotique .V1

Cet article présente la réalisation de la version 1 de l’électronique de commande des bras robotiques équipant le diorama de la Batcave du projet BATLab112.

Cahier des charges

  1. Objectif général
  2. Spécifications fonctionnelles
  3. Spécifications techniques

Objectif général

L’objectif opérationnel est de réaliser une maquette électronique assurant la commande en mode manuel et en mode automatique des bras robotisés équipant le diorama de la Batcave du projet BATLab112. Cette maquette doit permettre dans un premier temps, une commande des bras robotiques suivant trois modes de fonctionnement : Mode manuel, Mode automatique, Mode apprentissage.

L’objectif pédagogique consiste à se familiariser avec les principes de commande des servomoteurs.

Spécifications fonctionnelles

La sélection des différents mode de fonctionnement des bras robotiques par l’opérateur doit s’effectuer par des boutons poussoirs. Des voyants assurent la visualisation des états de fonctionnement.

Mode manuel

En mode manuel, les 2 bras robotiques sont commandés indépendamment. La commande des articulations est réalisée par l’intermédiaire de potentiomètres rotatifs. Cette commande doit s’effectuer en temps réel. La rotation de l’axe d’un potentiomètre doit entrainer la rotation de l’articulation correspondante.

Mode automatique

En mode automatique, les 2 bras robotisés sont commandés, indépendamment ou simultanément, suivant des consignes différentes. La commande des articulations est gérée par une unité de contrôle dans laquelle sont enregistrées l’ensemble des consignes nécessaires.

Mode apprentissage

En mode apprentissage, les 2 bras robotisés sont commandés indépendamment ou simultanément. L’enchainement des positions à apprendre pour chaque bras robotisé est défini par l’utilisation des commandes du mode manuel. La restitution de l’enchainement des positions enregistrées pour chaque bras est réalisée en mode automatique.

Spécifications techniques

Les actionneurs à commander

Chaque articulation des bras robotiques est équipée d’un servomoteur. Chaque bras est ainsi équipés de 4 servomoteurs.

L’unité de contrôle

L’unité de contrôle est une Carte Arduino Due.


Listes du matériel

Liste du matériel support

DésignationQtéRéférenceSource
Platine de prototype1Breadboard 830 NeufTechwww.amazon.fr
Alimentation 5VDC2USB
Alimentation 6VDC1Servomoteurs

Remarque : Les composants des alimentations électriques seront spécifiquement traités dans un prochain article.

Liste des composants utilisés

DésignationQtéRéférenceSource
Unité de contrôle1Carte Arduino Duestore.arduino.cc
Bouton rotatif8Potentiomètrewww.amazon.fr
Bouton poussoir6Bouton poussoir tactilewww.amazon.fr
Voyant rouge2Led 3mm rougewww.amazon.fr
Voyant bleu3Led 3mm bleuwww.amazon.fr
Voyant vert5Led 3mm vertewww.amazon.fr
*9Résistance

Schéma de câblage

Dans le cadre du projet BATLab112, les schéma électriques ou électroniques sont réalisés avec le logiciel KICAD. Vous pouvez télécharger le fichier du schéma de câblage au format PDF par le lien qui suit.


Code Arduino

Commentaires concernant ce code

Le code présenté ici est une première approche pour mettre en oeuvre les fonctions nécessaires aux commandes des servomoteurs et valider le principe général de commande de la maquette. Ce code n’est donc pas optimisé.


Validation technique et fonctionnelle

La maquette du bras robotisé

Cette maquette est réalisée pour les besoins de la validation technique et fonctionnelle de l’électronique de commande associée au code développé pour la carte Arduino Due qui pilote l’ensemble.

Cette maquette est réalisée avec des emballages de briques de jus de fruit. Cette matière légère, est suffisamment résistante pour supporter les assemblages nécessaires (ruban adhésif + boulon). Elle présente aussi une face dont l’état de surface est semblable à celui de l’aluminium, ce qui donne un rendu plutôt satisfaisant.

Cette maquette ne respecte pas fidèlement le design conçu en modélisation 3D et présente des défauts de fabrication qui induisent des perturbations dans les mouvements telles que des vibrations.

La vidéo du mode automatique


Conclusions

Electronique de commande

Ces tests permettent de valider le montage de l’électronique de commande des servomoteurs.

Trois points d’améliorations sont identifiés pour être intégrés dans les futures versions.

  • Point n°1 : Commandes manuelles
    • Constat : Les actions sur les potentiomètres de commande des servomoteurs impliquent l’usage d’un tournevis.
    • Evolution : Equiper les potentiomètres de boutons
  • Points n°2 : Enregistrement des positions en mode automatique
    • Constat : Les positions prédéfinies du mode automatique nécessitent la programmation de la Carte Arduino Due.
    • Evolution : Disposer d’un interface plus élaboré que des boutons poussoirs pour enregistrer ces positions sans avoir recours à la re-programmation systématique de la carte (exemples : clavier + écran ou écran tactile).
  • Points n°3 : Enregistrement des positions en mode apprentissage
    • Constat : Le nombre de positions disponible dans le mode apprentissage est limité à 5, ce qui est insuffisant pour envisager des enchaînement de trajectoires complexes.
    • Evolution : Disposer d’un interface plus élaboré que des boutons poussoirs et des Leds pour enregistrer ces positions (exemples : clavier + écran ou écran tactile).

Arduino Due + Code

Ces tests permettent de valider l’utilisation de la Carte Arduino Due et sa capacité à supporter le code nécessaire à la commande des servomoteurs.

Un point d’amélioration est identifié pour être intégré dans les futures versions.

  • Point n°4 : Codage de trajectoire plus fluide
    • Constat : Dans la démonstration réalisée en mode automatique les servomoteurs sont pilotés les uns après les autres pour atteindre chacune des positions. Cette méthode induit des mouvements lents et décomposés.
    • Evolution : Développer un pilotage simultané des servomoteurs pour obtenir des mouvement plus fluides et rapides

Servomoteurs

Ces tests permettent de valider l’utilisation de 3/4 servomoteurs comme actionneurs des articulations des bras robotisés. Une effet, le servomoteur utilisé pour l’articulation de l’épaule semble manqué par moment de couple. Cependant, compte tenu de la qualité de fabrication de la maquette qui n’est pas optimum il est difficile de conclure.

Bras robotiques – Conception préliminaire

Résumé :

Cet article présente la conception préliminaire des bras robotiques du diorama pédagogique de la Batcave, à l’échelle 1/12, du projet BATLab112.

Actualisé :


Introduction

Les bras robotiques du projet BATLab112 sont entièrement conçus pour répondre aux exigences du projet. Même si il existe de nombreux modèles commerciaux de bras robotiques dits d’apprentissage, la taille de ces modèles n’est pas forcément compatible avec l’échelle de réalisation au 1:12 du projet et leur esthétique n’est jamais conforme à celle d’un robot industriel.

Présentation générale

Les bras robotiques disposent de 4 degrés de liberté, autrement dit 4 articulations. Un moteur installé dans chaque articulation en assure la rotation.

Modélisation 3D

Evolution du design des versions des bras robotiques

Le design des bras robotiques est contraint par l’espace disponible dans l’atelier automatisé de la Batcave, notamment la hauteur sous plafond. A cette contrainte s’ajoute la contrainte de pouvoir accéder à tous les points de la surface de la Batmobile.

FreeCAD

La modélisation de la plateforme rotative de la Batmobile équipant la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCad V0.19.

Vues de détails

Base

La base est la pièce qui assure la fixation du bras robotique sur le pont roulant bipoutre. Ses dimensions sont conditionnées par l’implantation du servomoteur qui assure la rotation 1/2 de l’épaule.

Epaule

La pièce constituant l’épaule du bras robotique se fixe sur la base. Ses dimensions sont conditionnées par l’implantation du servomoteur qui assure la rotation 2/2 de l’épaule.

Bras et Avant-bras

Coude

La pièce qui assure la rotation 1/1 du coude intègre le Troisième servomoteur.

Poignet

La pièce constituant le poignet intègre un éventuel cinquième servomoteur dont la présence dépendra du design final du préhenseur.

Préhenseur

La conception du préhenseur reste à faire. L’objectif est de concevoir ( ou d’utiliser un concept existant ) un préhenseur capable de de s’équiper de différents outils spécialisés.

Calcul de masse

Le calcul de la masse maximale de chacune des composantes mécaniques du bras ; épaule, bras, avant-bras, permet de sélectionner le matériau adéquat pour la fabrication de ces pièces et de les dimensionner plus précisément ; épaisseur, densité …

Configurations de calcul

Configuration n°1 :

Cette première configuration présente des conditions favorables de ce calcul : Le bras à l’horizontal et l’avant bras vertical. Le poids équivalent aux poids de ces deux pièces (P) s’exerce à une distance restreinte du point de rotation. Par conséquent, le couple exercé par le moteur de l’épaule est plus faible que dans la deuxième configuration.

Configuration n°2 :

Cette configuration présente des conditions défavorables de ce calcul : le bras et l’avant bras sont tendus à l’horizontale. Le poids équivalent aux poids des deux pièces, s’exerce à une distance plus grande que dans la première configuration. Par conséquent, le couple exercé par le moteur de l’épaule est plus important.

Remarque : Même si la deuxième configuration reste improbable compte tenu de l’implantation des bras robotiques dans le diorama, elle permet une estimation des valeurs limites.

Données et approximations pour ce calcul

Le bras et l’avant-bras du bras robotique ont la même longueur (L = 15 cm).
Le bras et l’avant-bras du bras robotique ont la même masse (m) répartie de manière homogène.
La masse du poignet ( et du préhenseur ) sont négligées.

Caractéristiques techniques d’un servomoteur

Le site affiche un couple sous 4,8V de 1kg/cm (voir extrait). L’unité utilisée n’est pas conforme avec celle d’un couple qui devrait être 1kg.cm. Nous utiliserons cette valeur pour la suite des calculs.

Calculs

Configurations 1 :

C = L/2 x m + L x m
C = (L/2 + L) x m
C = 3/2L x m
m = C / 3/2L
m = 1 / (3/2×15)
m = 44g

Configuration 2 :

C = L/2 x m + 3/2L x m
C = (L/2 + 3/2L) x m
C = 2L x m
m = C / 2L
m = 1 / (2×15)
m = 33g

Voir aussi

Articles – Bras robotique

Articles – Conception préliminaire

Bras robotiques industriels : revue des typologies existantes et applications pour le projet BATLab112

Cet article de parangonnage des bras robotiques industriels analyse les principales typologies utilisées dans l’industrie afin d’alimenter la réflexion conceptuelle du projet BATLab112. Il définit le bras robotique comme un manipulateur articulé automatisé, largement employé sur les chaînes de production industrielles, notamment automobiles. L’étude distingue trois catégories majeures : robots de production en ligne, robots manipulateurs suspendus et robots de charges lourdes, en mettant en évidence leurs usages, contraintes spatiales et capacités fonctionnelles. Cette analyse comparative constitue une base de référence pour l’intégration scénographique et technique du diorama de la Batcave.… Lire la suite →

Première publication :

Dernière mise à jour :

Temps de ecture :

3–5 minutes

Mots clés :

Bras robotiques industriels : principes généraux et champs d’application

Les bras robotiques industriels constituent des systèmes automatisés articulés conçus pour exécuter des tâches répétitives, précises et à forte valeur ajoutée dans des environnements de production. Ils sont largement utilisés dans des secteurs tels que l’automobile, l’aéronautique, l’électronique, la logistique ou encore l’agroalimentaire, où ils contribuent à l’optimisation des processus et à l’amélioration de la qualité.

Le fonctionnement d’un bras robotique repose sur une architecture cinématique composée de plusieurs axes motorisés, généralement électriques, permettant des mouvements de rotation ou de translation. Ces axes sont pilotés par une unité de contrôle programmable qui coordonne les trajectoires, la vitesse et les efforts appliqués. Le bras est équipé d’un effecteur terminal — pince, outil de soudage, ventouse, capteur ou autre dispositif spécialisé — adapté à la tâche à réaliser. Des capteurs intégrés assurent le retour d’information, garantissant précision, répétabilité et sécurité.

L’utilisation des bras robotiques vise principalement l’automatisation des opérations telles que l’assemblage, la manutention, le soudage, la peinture ou l’inspection. Leur intégration permet de réduire la pénibilité pour les opérateurs humains, d’accroître la productivité et d’assurer une qualité constante. De plus, les évolutions récentes, notamment en robotique collaborative, favorisent une interaction sécurisée entre l’homme et la machine, renforçant la flexibilité et l’adaptabilité des systèmes industriels contemporains.

Revue des typologies de bras robotiques industriels existants

Typologies de bras robotiques industriels et domaines d’application

Robots de production en ligne

Les robots de production en ligne sont principalement intégrés au cœur des chaînes de fabrication automatisées. Ils sont conçus pour exécuter des tâches répétitives à haute cadence, telles que l’assemblage, le soudage, la peinture ou la manutention légère. Leur implantation est généralement fixe, optimisée pour un cycle de production continu et standardisé. Grâce à une programmation précise et à une forte répétabilité, ces robots contribuent à l’amélioration de la productivité, à la réduction des variations de qualité et à la sécurisation des processus industriels.

Robots manipulateurs suspendus

Les robots manipulateurs suspendus se distinguent par leur implantation en hauteur, généralement fixés à une structure porteuse, à un rail ou à un pont roulant. Cette configuration libère l’espace au sol et permet une intervention au-dessus des zones de travail. Ils sont particulièrement adaptés aux environnements contraints ou aux applications nécessitant une large zone de couverture, comme la manutention de pièces volumineuses ou l’intervention sur des ensembles complexes. Leur architecture favorise la flexibilité des trajectoires et une intégration efficace dans des systèmes industriels modulaires.

Robots de charges lourdes

Les robots de charges lourdes sont spécifiquement conçus pour la manipulation de masses importantes, pouvant atteindre plusieurs centaines de kilogrammes, voire plusieurs tonnes. Ils sont utilisés dans des secteurs tels que la sidérurgie, la construction mécanique, l’aéronautique ou l’automobile, pour le déplacement, le positionnement ou l’assemblage de composants de grande dimension. Leur conception privilégie la robustesse structurelle, la puissance des actionneurs et la fiabilité des systèmes de contrôle, garantissant des opérations sûres et précises malgré des contraintes mécaniques élevées.

Intérêt des robots manipulateurs suspendus et de charge lourde pour l’intégration au projet BATLab112

En conclusion, l’analyse des différentes typologies de bras robotiques industriels souligne le potentiel particulier des robots manipulateurs suspendus et des robots de charge lourde pour des applications complexes. Les manipulateurs suspendus offrent une grande liberté de déplacement au-dessus des zones de travail, optimisant l’espace et la flexibilité des interventions, tandis que les robots de charge lourde assurent la manipulation sécurisée de pièces volumineuses ou massives. La combinaison de ces deux caractéristiques présente un intérêt stratégique pour le projet BATLab112, en permettant l’intégration d’un système capable à la fois de se déplacer au-dessus du diorama et de manipuler des éléments lourds avec précision et sécurité.

Voir la suite des articles sur l’étape de parangonnage de la gestion du projet BATLab112

Voir tous les articles de la gestion du projet BATLab112 sur la conception des bras robotiques équipant le diorama de la Batcave