Poste électrique du diorama de la Batcave – Réalisation du modèle opérationnel de distribution électrique à l’échelle 1/12

Informations générales

Cet article présente le premier modèle opérationnel du local électrique à l’échelle 1/12 du diorama pédagogique Batcave du projet BATLab112. Il décrit la fabrication itérative du poste électrique fonctionnel, sa distribution des tensions adaptées à des contraintes techniques et de sécurité, ainsi que des aspects de réalisation mécanique et d’éclairage intégré.… Lire la suite →

Première publication :

Dernière mise à jour :

Temps de lecture :

5–7 minutes

Article précédent :

Article suivant :


Introduction : rôle et enjeux du poste électrique dans le diorama pédagogique de la Batcave

Le poste électrique intégré au diorama de la Batcave du projet BATLab112 constitue un élément structurant et central de l’infrastructure technique du diorama. Il assure la distribution de l’énergie électrique nécessaire au fonctionnement de l’ensemble des systèmes industriels miniaturisés à l’échelle 1/12. Conçu comme un équipement pleinement opérationnel, ce poste électrique vise à reproduire, avec un haut degré de fidélité, les principes de fonctionnement d’un poste électrique réel, tout en étant adapté aux contraintes propres à un dispositif pédagogique et expérimental.

La réalisation de ce prototype ne s’est pas inscrite dans une démarche linéaire aboutissant à une version définitive unique, mais s’est développée de manière itérative tout au long de la phase de conception. Cet article s’inscrit ainsi dans la continuité de la troisième évolution de la conception détaillée du poste électrique.

Architecture générale du poste électrique du diorama BATLab112

Le poste électrique du diorama se compose de deux sous-ensembles distincts, chacun ayant fait l’objet de phases spécifiques de conception et de prototypage : le poste de transformation HT/BT et les armoires de distribution électrique.

Poste HT/BT
Armoires de distribution électrique

Poste de transformation HT/BT à l’échelle 1/12 : adaptation fonctionnelle et contraintes de sécurité

Le poste HT/BT, réalisé à l’échelle 1/12 dans le cadre du diorama pédagogique du projet BATLab112, reproduit le fonctionnement général d’un poste de transformation réel. Toutefois, les niveaux de tension et les caractéristiques électriques des tensions d’entrée et de sortie ont été volontairement adaptés. Ces ajustements répondent, d’une part, aux contraintes techniques inhérentes au diorama et, d’autre part, aux exigences de sécurité liées à la manipulation des équipements. Dans ce contexte, la « haute tension » correspond à l’alimentation électrique générale du diorama, fournie par une prise secteur de 230 V en courant alternatif (AC), tandis que la « basse tension » est définie comme une tension de 12 V en courant continu (DC), compatible avec les besoins des modules électroniques intégrés au diorama, tels que les cartes Arduino, les écrans tactiles et les circuits imprimés.

Armoires de distribution électrique : gestion des tensions et rationalisation énergétique du diorama

Les armoires de distribution électrique assurent quant à elles la répartition des différentes tensions nécessaires à l’alimentation des modules électroniques et des actionneurs électromécaniques. La phase de conception préliminaire, associée au sourcing des composants, a permis de rationaliser l’architecture électrique en limitant à trois le nombre de niveaux de tension requis pour l’ensemble des modules électroniques : 5 VDC, 6 VDC et 12 VDC. Chaque armoire de distribution est dédiée à un niveau de tension spécifique. Une quatrième armoire est exclusivement consacrée à l’alimentation des moteurs du pont élévateur. Bien que ces moteurs fonctionnent également sous une tension de 12 VDC, ce choix vise à limiter la quantité d’énergie électrique transitant au sein d’une même armoire, dans une logique de sécurité et de gestion des flux énergétiques.

Caractéristiques électriques du réseau électrique du diorama

Les caractéristiques électriques détaillées du poste électrique du diorama du projet BATLab112 sont présentées dans l’article suivant :

Câblage électrique du diorama

Cet article propose une analyse technique approfondie des choix relatifs au câblage du réseau électrique du diorama pédagogique de la Batcave, reproduisant à l’échelle 1/12 une infrastructure électrique fonctionnelle. Il s’inscrit dans le cadre de la documentation technique du projet, en explicitant la conception et le dimensionnement du réseau de distribution électrique depuis la sortie du convertisseur de puissance jusqu’aux consoles de commande.

Lire la suite …

Éléments de réalisme et intégration mécanique

Garde-corps, passerelle et sécurité à l’échelle 1/12

Dans un souci de réalisme et de cohérence avec les standards industriels, la plateforme du local électrique a été équipée de garde-corps assurant la sécurité du personnel, ainsi que d’une passerelle d’accès. Ces éléments ont été réalisés à l’échelle 1/12 par un assemblage boulonné combinant des pièces issues de l’impression 3D — notamment les poteaux des garde-corps et la structure porteuse de la passerelle — et des éléments métalliques, tels que les traverses des garde-corps et le caillebotis de la passerelle.

Structure de support des câbles inspirée des racks industriels

Les câbles électriques raccordés aux différents composants du poste sont maintenus par une structure de support directement inspirée des racks de stockage de type cantilever utilisés en milieu industriel. Cette structure a été conçue à partir de profilés en aluminium, associés à des pièces d’assemblage imprimées en 3D, permettant à la fois une bonne rigidité mécanique et une flexibilité dans l’agencement des câbles.

Système d’éclairage du poste électrique du diorama

Principe de câblage et alimentation des luminaires LED

À ce stade d’avancement du diorama, le système d’éclairage du poste électrique relève encore d’un prototype expérimental. Le principe retenu repose sur l’utilisation de boucles composées de six diodes électroluminescentes (LED) rouges montées en série, chacune étant capable de supporter une tension supérieure à 2 VDC. Chaque boucle est alimentée par une tension de 12 VDC. La mise en œuvre de deux boucles distinctes de six LED a été nécessaire pour assurer l’éclairage complet du poste électrique, tel qu’il apparaît sur les supports photographiques associés.

Limites techniques et axes d’amélioration du système d’éclairage

Si le rendu esthétique global est jugé satisfaisant, des améliorations restent à apporter concernant la technique de câblage des luminaires. Ces derniers, réalisés par impression 3D et équipés chacun d’une LED rouge, sont fixés sur les montants horizontaux de la structure métallique supportant les câbles. Toutefois, le raccordement électrique des luminaires au circuit 12 VDC présente une tenue mécanique insuffisante. Les vibrations induites par les opérations de branchement et de débranchement des connecteurs des armoires électriques peuvent entraîner la déconnexion intempestive des luminaires, ce qui souligne la nécessité d’une évolution de cette solution technique.

Modélisation 3D du diorama avec FreeCAD

La modélisation 3D du réseau électrique du diorama de la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCAD.

Le projet BATLab112 utilise la version 0.21.2 du modeleur 3D FreeCAD pour la conception du diorama de la Batcave à l’échelle 1/12. FreeCAD permet de structurer la conception du diorama en amont de sa fabrication, de visualiser des volumes, vérifier des proportions et anticiper des contraintes techniques. L’utilisation de FreeCAD constitue un support méthodologique rigoureux pour la réalisation précise et cohérente de l’ensemble.

Impression 3D du diorama

L’impression 3D des pièces des équipements industriels de la Batcave du projet BATLab112 a été réalisée avec une imprimante Anet A8 et le logiciel Cura.

Voir aussi

Des articles sur la conception du réseau électrique du diorama

Des articles sur les modèles opérationnels et prototypes du diorama

Local électrique – Conception Détaillée – V3

Cet article présente la troisième version de la conception détaillée, du local électrique à l’échelle 1/12, du diorama de la Batcave du projet BATLab112. Cette mise à jour de cette conception est en lien avec la mise en jour du modèle opérationnel du local technique.


Introduction

Cet article fait suite à la réalisation du premier modèle opérationnel du local électrique du diorama de la Batcave du projet BATLab112.

Batcave Diorama Electricity Station

Présentation générale

Batcave Diorama Electricity Station Design by FreeCad

Modélisation 3D

FreeCAD

Cet article intervient aussi après un changement d’environnement technique autorisé par le changement d’ordinateur. A présent la version 0.21.2 de FreeCAD est utilisée pour une meilleure définition de la conception du projet BATLab112.

La modélisation du poste électrique équipant la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCad V0.21.2

Voir aussi

Articles – Electricité

Articles – Conception détaillée

Local électrique – Conception Détaillée – V2

Screenshot

Cet article présente la deuxième version de la conception détaillée, du local électrique à l’échelle 1/12, du diorama de la Batcave du projet BATLab112. Cette mise à jour de cette conception est en lien avec la réalisation du premier modèle opérationnel du local technique.


Introduction

Cet article fait suite à l’article précédent sur la conception détaillée du local technique et ceux de la fabrication des différents éléments du modèle opérationnel.

Présentation générale

Les modifications par rapport à la précédente version de la conception détaillée :

  • Une quatrième armoire de distribution
  • La structure Cantilever de support des chemin de câbles
  • Un premier design de la passerelle d’accès au local électrique

Une quatrième armoire de distribution

Cette quatrième armoire de distribution, identique dans sa conception au 3 premières est une armoire supplémentaire pour assurer la distribution des tensions 12VDC.

Armoires de distribution

La structure cantilever

Cette structure est conçue comme support au chemin de câble. Le détail de sa conception fera l’objet d’un prochain article en cours de rédaction.

Structure Cantilever de support des chemin de câble

La passerelle d’accès

La conception de cette passerelle n’est pas encore totalement aboutie lorsque cet article sera mis en ligne. Un article dédié est en cours de rédaction.

Passerrelle d’accès au local électrique

Modélisation 3D

FreeCAD

La modélisation du poste HT/BT équipant la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCad V0.19.

Voir aussi

Articles – Electricité

Articles – Conception détaillée

Prototype fonctionnel d’armoire de distribution électrique basse tension pour diorama

Informations générales

L’article présente la fabrication d’un prototype d’armoire de distribution électrique basse tension pour le diorama du projet BATLab112, conçu pour distribuer les tensions 5 VDC, 6 VDC et 12 VDC vers les consoles de commande. Il expose les retours d’expérience des prototypes antérieurs, l’impression 3D de la structure interne et la modification du design pour résoudre les échecs…

Première publication :

Dernière mise à jour :

Temps de ecture :

6–9 minutes

Mots clés :


Introduction

À l’issue de la phase de conception détaillée du modèle d’armoire de distribution électrique du diorama, l’objectif consiste désormais à réaliser un premier prototype fonctionnel. Cette étape vise à valider les choix techniques retenus avant la fabrication des quatre modèles opérationnels destinés à assurer la distribution des tensions 5 VDC, 6 VDC et 12 VDC vers les quatre consoles de commande des équipements industriels intégrés au diorama.

Retour d’expérience sur les armoires de raccordement électrique

Le retour d’expérience issu des prototypes antérieurs des armoires de raccordement du poste HT/BT a mis en évidence que l’absence de structure interne ne permet pas d’assurer une rigidité mécanique satisfaisante. Bien que l’enveloppe de ces armoires, réalisée à partir d’emballages de produits alimentaires, puisse apparaître suffisamment rigide lors de la phase de fabrication, cette rigidité s’avère insuffisante lors des phases de manipulation et d’exploitation. En conséquence, l’enjeu principal de la réalisation de ce prototype réside dans la validation de la faisabilité technique d’une structure interne réalisée par impression 3D.

Impression 3D de la structure interne d’une armoire électrique du diorama

Fabrication par impression 3D de la structure issue de la conception détaillée

Le design monobloc de la structure interne des armoires de distribution électrique a fait l’objet d’une analyse approfondie lors de la phase de conception détaillée. L’un des objectifs principaux de cette étude était de limiter la quantité de matière utilisée, en particulier celle associée aux éléments de support. À cet effet, la géométrie retenue se caractérise par des zones en surplomb conçues sous forme d’arches, ne nécessitant aucun support d’impression lors du procédé de fabrication additive. Cette approche permet ainsi d’éliminer toute production de matière résiduelle liée aux supports d’impression.

Deuxième impression 3D : analyse d’un échec de fabrication

Malgré l’attention particulière portée à la conception de ce design, la seconde tentative d’impression s’est soldée par un échec de fabrication. Lors de cette opération, la tête de l’imprimante 3D est entrée en collision avec le modèle en cours d’impression, comme l’illustre la photo associée. Afin de limiter les pertes de matière et de temps, aucune nouvelle impression de ce design n’a été engagée à ce stade.

À ce jour, la cause principale avancée pour expliquer cet incident semble être liée à la taille du fichier numérique stocké sur la carte SD utilisée par l’imprimante 3D Anet A8 du projet BATLab112. Il apparaît en effet que le lecteur de carte SD de la carte électronique de l’imprimante présente des dysfonctionnements lors de la lecture de fichiers volumineux, en particulier lorsque la carte a fait l’objet de multiples cycles d’écriture et de suppression.

Afin de prévenir la récurrence de ce phénomène, deux mesures correctives ont été mises en œuvre. La première consiste à recourir à des cartes SD de faible capacité (8 Go), dédiées exclusivement au stockage des fichiers définitifs avant impression, en limitant les opérations d’écriture. La seconde, détaillée dans le chapitre suivant, repose sur une modification du design du prototype visant à réduire les durées d’impression des pièces.

À la date de mise en ligne de cet article, l’application conjointe de ces deux actions a permis d’éliminer l’apparition de ce dysfonctionnement.

Évolution du design de la structure interne des armoires électrique du diorama

Le nouveau design résulte d’une approche alternative fondée sur la décomposition de la structure en plusieurs éléments distincts, comme l’illustre la capture d’écran de la vue éclatée réalisée à l’aide du logiciel FreeCAD. L’intérêt de cette démarche réside dans la conception de pièces de dimensions réduites et de géométrie majoritairement plane, permettant de diminuer les temps d’impression et de s’affranchir de l’utilisation de supports d’impression. En contrepartie, cette approche implique la définition et la conception des interfaces d’assemblage entre les différents éléments constitutifs de la structure.

Bien que cette méthode de conception ne permette pas d’exclure totalement la réapparition des dysfonctionnements précédemment observés, elle garantit néanmoins une réduction significative de l’impact potentiel en termes de durée d’impression et de quantité de matière susceptible d’être perdue.

Modélisation 3D du nouveau design de la structure interne des armoires électriques du diorama avec FreeCAD

La modélisation du poste HT/BT équipant la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCad V0.19.

Impression 3D d’une structure modulaire des armoires électriques du diorama

Préparation du fichier pour impression 3D avec Cura

Impression 3D des éléments de la structure modulaire

Chaque élément constituant la structure interne de l’armoire de distribution est imprimé individuellement. Les deux côtés de l’armoire présentent une symétrie identique, impliquant l’impression en double du même design. Afin de réduire les durées d’impression, les pièces ont été réalisées en qualité « Normal » avec une épaisseur de couche de 0,15 mm. Ce réglage n’offre pas le rendu optimal en termes de finition de surface, mais il reste satisfaisant, la structure interne n’étant ni visible de l’extérieur ni significativement perceptible de l’intérieur.

L’ensemble de ces pièces a été imprimé sans rencontrer la problématique observée précédemment avec le modèle monobloc, confirmant la pertinence de l’approche de décomposition du design.

L’impression 3D des pièces des équipements industriels de la Batcave du projet BATLab112 a été réalisée avec une imprimante Anet A8 et le logiciel Cura.

Assemblage de la structure des armoires électriques du diorama

L’assemblage de la structure est réalisé par emboitement des pièces. Les côtes des éléments d’assemblage tenon-mortaise ont été obtenues de manière empirique pour prendre en compte la précision d’impression.

Fabrication du module sectionneur des armoires de électrique du diorama

Impression 3D de la structure mécanique du sectionneur électrique

Pour des raisons de gestion des temps d’utilisation de l’imprimante, les pièces composant le sectionneur sont imprimées unitairement.

Assemblage des composants du sectionneur électrique

L’assemblage des différentes pièces du sectionneur est réalisé à l’aide de boulons de type M2. Les blocs de jonction électrique sont positionnés dans leurs supports respectifs, lesquels sont ensuite fixés sur le corps principal du sectionneur. Les deux interrupteurs sont maintenus par deux écrous chacun. Dans les modèles opérationnels, afin de prévenir tout desserrage des écrous susceptible de provoquer leur chute à l’intérieur de l’armoire électrique sous tension — et donc d’engendrer des courts-circuits —, l’utilisation de frein-filet est prévue sur l’ensemble des boulons.

Câblage interne du module sectionneur électrique du diorama

Le câblage est réalisé à l’aide de conducteurs en cuivre rigide de couleur rouge et bleue, d’une section de 2,5 mm². Cette section dépasse les exigences des normes de câblage électrique, compte tenu du courant maximal de 6 A circulant dans ces conducteurs. Par ailleurs, cette configuration offre un rendu esthétique satisfaisant.

Fabrication du module porte fusible des armoires électrique du diorama

Lors de la phase de conception détaillée, le design du porte-fusible a fait l’objet d’une étude spécifique. Aucun des modules disponibles sur le marché ne répondait pleinement aux exigences du projet, tant en termes de nombre de voies que de dimensions. La fabrication d’un porte-fusible complet aurait été fastidieuse et aurait présenté un résultat incertain sur le plan des contraintes mécaniques et électriques. Par conséquent, le choix s’est porté sur l’utilisation d’un boîtier automobile à six voies avec point commun, dont l’enveloppe mécanique peut être modifiée afin de répondre aux contraintes d’intégration au sein de la structure de l’armoire.

Impression 3D des supports mécaniques du module porte fusible

Impression 3D des chemins de câble du module porte fusible

Assemblage du module porte fusible

Assemblage final des modules composants une armoire de distribution électrique du diorama

Câblage interne d’une armoire de distribution électrique du diorama

Le bloc porte-fusibles est connecté à la sortie du sectionneur à l’aide de deux conducteurs en cuivre rigide de section 2,5 mm². L’emploi de cette section, identique à celle utilisée pour le sectionneur, assure la cohérence du câblage ainsi que le respect des normes électriques en vigueur. Par ailleurs, chaque connecteur de sortie de l’armoire est raccordé au bloc porte-fusibles au moyen de deux conducteurs de calibre 20 AWG.

Voir aussi

Des articles sur l’avancement du réseau électrique du diorama

Des articles sur la fabrication des prototypes d’autres équipements industriels à l’échelle 1/12

Câblage électrique du diorama

Informations générales

Cet article propose une analyse technique approfondie des choix relatifs au câblage du réseau électrique du diorama pédagogique de la Batcave, reproduisant à l’échelle 1/12 une infrastructure électrique fonctionnelle. Il s’inscrit dans le cadre de la documentation technique du projet, en explicitant la conception et le dimensionnement du réseau de distribution électrique depuis la sortie…

Première publication :

Dernière mise à jour :

Temps de ecture :

8–12 minutes

Introduction

Cet article propose une analyse technique approfondie des choix relatifs au câblage du réseau électrique du diorama pédagogique de la Batcave, reproduisant à l’échelle 1/12 une infrastructure électrique fonctionnelle. Il s’inscrit dans le cadre de la documentation technique du projet, en explicitant la conception et le dimensionnement du réseau de distribution électrique depuis la sortie du convertisseur de puissance jusqu’aux consoles de commande. Cette étude méthodique aborde successivement la structuration du réseau de distribution, l’architecture interne des armoires électriques, les bilans de courant nécessaires à la définition des sections des câbles d’entrée et de sortie, ainsi que les critères retenus pour assurer une chute de tension conforme aux exigences fonctionnelles et de sécurité. Par cette démarche, l’article vise à clarifier les principes de câblage qui garantissent l’alimentation adéquate des éléments actifs du diorama, tout en respectant des contraintes techniques propres à un modèle réduit fonctionnel.

Architecture du réseau électrique du diorama

Le réseau électrique du diorama de la Batcave est conçu pour assurer la distribution de l’énergie nécessaire à l’alimentation des composants actifs, tels que les moteurs, les écrans, les capteurs et les dispositifs d’éclairage à LED. Son architecture est structurée en quatre sous-ensembles fonctionnels distincts.

  • Le poste HT/BT, implanté au niveau −2 du diorama au sein du local électrique, assure le raccordement au réseau domestique 230 V – 50 Hz et la conversion de la tension secteur en très basses tensions continues (12 V, 6 V et 5 V), adaptées aux exigences des différents équipements.
  • Les armoires de distribution, également situées dans le local électrique, permettent la démultiplication et la répartition de ces tensions vers les consoles de commande.
  • Le panneau de raccordement, implanté au niveau −1, centralise l’ensemble des liaisons issues des capteurs et des armoires de distribution avant leur connexion aux consoles.
  • Les consoles de commande, situées au même niveau, assurent le pilotage des composants actifs du diorama en intégrant les commandes manuelles, automatiques et les informations issues des capteurs.

Détail du réseau de distribution électrique vers les consoles de commande des équipements industriels du diorama

Le câblage interne du poste HT/BT ayant déjà fait l’objet d’une étude propre, cet article se focalise sur les armoires de distribution, le câblage électrique depuis la sortie du convertisseur de puissance jusqu’aux consoles de commande.

Armoires de distribution électrique du diorama

Le câblage du réseau de distribution électrique doit être conçu en prenant en considération l’ensemble des liaisons, tant en entrée qu’en sortie des armoires de distribution, ainsi que leur câblage interne. Les conducteurs d’entrée se prolongent au sein des armoires par le câblage interne, organisé dans la colonne descendante située sur la partie gauche de celles-ci. À l’inverse, les conducteurs associés à la colonne montante, disposée sur la partie droite des armoires, assurent la continuité du câblage interne vers l’extérieur et se prolongent par les câbles de sortie en direction des consoles de commande.

Câblage interne des armoires de distribution électrique

Les câbles d’entrée

Les câbles d’entrée, issus du convertisseur de puissance, assurent l’alimentation électrique de l’armoire de distribution. Ils pénètrent dans celle-ci par l’intermédiaire du presse-étoupe « Supply Input », avant d’être raccordés aux interrupteurs-sectionneurs. En aval de ces dispositifs de coupure, les conducteurs sont connectés au porte-fusibles de type Blade Fuse Holder. L’intensité du courant électrique circulant dans les câbles d’entrée correspond à la somme des intensités des courants délivrés par les six voies de sortie de l’armoire.

Les câbles de sortie

Les câbles de sortie sont prélevés sur chacune des six voies du porte-fusibles et raccordés aux bornes d’un connecteur de sortie de type Output Jack. L’intensité du courant circulant dans chaque paire de conducteurs est dimensionnée en fonction des besoins énergétiques d’une seule console de commande, pour la tension fournie par l’armoire de distribution.

Bilan électrique du diorama

Introduction

Le bilan électrique constitue une étape fondamentale dans le dimensionnement d’un réseau électrique, en permettant d’évaluer de manière globale et cohérente les besoins énergétiques d’un système. Il repose sur l’identification et la quantification des puissances et des courants associés à l’ensemble des charges alimentées, en tenant compte de leurs régimes de fonctionnement et de leurs conditions d’exploitation. Cette approche analytique vise à assurer l’adéquation entre les sources d’alimentation, les dispositifs de protection et les conducteurs, tout en garantissant la continuité de service, la sécurité des installations et la conformité aux contraintes normatives.

Métrique du bilan électrique des composants du diorama

Ce bilan électrique a pour but d’évaluer les ordres de grandeur des courants électriques, véhiculés par les câbles, afin de pouvoir en définir leur section. Ce bilan électrique porte sur les valeurs suivantes :

CaractéristiquesDésignation
P0 (mW)Puissance à vide en milli-Watt
Pn (mW)Puissance nominale en milli-Watt
Un (V)Tension nominale en Volt
I0 (mA)Courant à vide en milli-Ampère
In (mA)Courant nominal en milli-Ampère
Is (mA)Courant de décrochage en milli-Ampère ( Pour les moteurs 6VDC )

Information complémentaire

Il est important de noter que ce bilan électrique ne prend pas en compte l’alimentation en énergie électrique des 4 moteurs 12VDC du pont élévateur. Une armoire électrique spécifique au pont élévateur sera développée ultérieurement dans le projet.

Bilan électrique des armoires de distribution 12VDC

Les tensions de 12VDC sont utilisées pour alimenter en énergie électrique les deux Cartes Arduino Mega qui pilotent les deux écrans tactiles de la console. Le tableau suivant présente les bilans électriques d’une carte Arduino Mega à vide et d’un écran tactile TFT 2,8″ en fonctionnement nominal. La somme de ces valeurs correspondent aux valeurs utiles en entrée de la Console de commande.

MatérielP0(mW)Pn(mW)Un(V)I0(mA)In(mA)
Carte Arduino Mega (1)630(*)1252(*)
Ecran TFT 2,8″ (2)(**)3303,3(**)100
Total (Arduino + Ecran) x2192012160

Bilan électrique des armoires de distribution 6VDC

Les tensions de 6VDC sont utilisées pour alimenter en énergie électrique les mini moteurs de la plateforme rotative et du pont roulant, via la console de commande. Le tableau suivant présente le bilan électrique pour le moteur 6VDC 300 RPM de la plateforme rotative et les 2 moteurs 6VDC 10 RPM du pont roulant ainsi le contrôleur L298N.

MatérielPn(mW)Un(V)I0(mA)In(mA)Is(mA)
Mini Moteur 6VDC 10 RPM (1)120610201000
Mini Moteur 6VDC 300 RPM (1)54065090300
Contrôleur L298N (2)4206(*)702000
Total 12006702002300

Bilan électrique des armoires de distribution 5VDC

Les tensions de 5VDC sont utilisées pour alimenter en énergie électrique les cartes électroniques du panneau de commande et les relais implantées dans la console de commande. Le tableau suivant présente le bilan électrique pour les composants actifs ; relais et leds. La carte électronique des relais contient 5 relais. La carte électronique du panneau des commandes contient 7 leds. Pour ce calcul, nous considérons que tous les relais et toutes les leds peuvent être actifs en même temps.

MatérielPn(mW)Un(V)In(mA)
Relais 5VDC (1)450590
Led 3mm Rouge50510
Total Carte Relais (Relais x5)22505450
Total Panneau de Commande (Led x7)350570
Total Electronique Console de Commande26005520

Section des câbles électriques du diorama

Le dimensionnement des sections de câble électrique constitue un élément essentiel de la conception des réseaux de distribution, car il conditionne à la fois la sécurité, la fiabilité et la performance des installations. Il repose sur l’analyse des courants à transporter, des longueurs de liaison et des conditions d’exploitation, afin de limiter l’échauffement des conducteurs et de maîtriser les chutes de tension. Cette démarche intègre également les exigences normatives et les dispositifs de protection, garantissant une alimentation électrique adaptée aux charges tout en assurant la pérennité de l’infrastructure.

Section des câbles d’entrée

Les tableaux suivants, présentes pour chacune des armoires électriques, l’impact du choix de section des câbles d’entrée en fonction du résultats des bilans électriques précédents. La longueur des câble d’entrée est fixée à 1m.

Armoire de distribution 12VDC

La valeur de l’intensité du courant électrique prise pour ce calcul est de 400 mA pour une console de commande, en prenant 20% de marge par rapport au résultat du bilan électrique précédent. Dans la perspective où 6 consoles de commandes sont alimentées en énergie électrique par les 6 sorties de l’armoire de distribution, la valeur de l’intensité du courant électrique prise en référence est de 6 x 400 = 2400 mA.

S (mm2)I(mA)L (m)R (ohm)△U(mV)△U(%)
0,5240010,03720,6%
1240010,02480,4%
1,5240010,01240,2%

Armoire de distribution 6VDC

L’armoire de distribution électrique est dimensionnée pour 6 sorties. Le bilan électrique prend en compte l’utilisation de 2 sorties seulement (Plateforme et Pont roulant). Par conséquent, la valeur de l’intensité du courant électrique est multipliée par 3, soit un total de 600 mA. La valeur de l’intensité du courant électrique prise en référence pour ce calcul est de 720 mA, en prenant 20% de marge, par rapport au résultat du bilan électrique.

S (mm2)I(mA)L (m)R (ohm)△U(mV)△U(%)
0,572010,0321,60,4%
172010,0214,40,2%
1,572010,017,20,1%

Armoire de distribution 5VDC

La valeur de l’intensité du courant électrique prise pour ce calcul est de 630 mA, en prenant 20% de marge, par rapport au résultat du bilan électrique. Dans la perspective ou 6 consoles de commandes sont alimentées en énergie électrique par les 6 sorties de l’armoire de distribution, la valeur de l’intensité du courant électrique prise en référence est de donc de 6 x 630 = 3800 mA.

S (mm2)I(mA)L (m)R (ohm)△U(mV)△U(%)
0,5380010,031142,3%
1380010,02761,5%
1,5380010,01380,8%

Conclusion

Une section de câble au moins égale à 0,5mm2 est suffisante pour obtenir une chute de tension en ligne inférieure à 1% pour les armoires de distribution électrique de 12VDC et 6VDC. Par contre, une section de câble au moins égale à 1,5mm2 est nécessaire pour obtenir une chute de tension inférieure à 1% pour l’armoire de distribution électrique 5VDC.

Section des câbles de sortie

Armoire de distribution 12VDC

La valeur de l’intensité du courant électrique prise en référence est de 200 mA en prenant une marge de sécurité d’au moins 20% par rapport à la valeur du bilan électrique.

S (mm2)I(mA)L (m)R (ohm)△U(mV)△U(%)
0,520020,07140,1%
120020,036< 0,1%
1,520020,024< 0,1%

Armoire de distribution 6VDC

En prenant en compte la configuration la plus sévère (2 moteurs 300 RPM + 1 Contrôleur L298N), la valeur de l’intensité du courant électrique prise en référence est de 200 mA, en prenant une marge de sécurité d’au moins 20% par rapport à la valeur du bilan électrique.

S (mm2)I(mA)L (m)R (ohm)△U(mV)△U(%)
0,520020,07140,2%
120020,0360,1%
1,520020,024< 0,1%

Armoire de distribution 5VDC

La valeur de l’intensité du courant électrique prise en référence est de 650 mA en prenant une marge de sécurité d’au moins 20% par rapport à la valeur du bilan électrique.

S (mm2)I(mA)L (m)R (ohm)△U(mV)△U(%)
0,565020,07460,9%
165020,03200,4%
1,565020,02130,3%

Conclusion

Une section de câble au moins égale à 0,5mm2 est suffisante pour obtenir une chute de tension en ligne inférieure à 1% pour les 3 armoires de distribution électrique.

Bilan de dimensionnement du câblage du réseau électrique du diorama

CâbleLongueurSectionTypeAWG (1)
Depuis Convertisseur vers Armoire1 m1,5 mm2Cuivre15
Depuis Armoires vers Consoles2 m0,5 mm2Cuivre20

Voir aussi

Des articles relatifs à la conception et la fabrication du réseau électrique du diorama

Local électrique – Conception Détaillée – V1

Cet article présente la conception détaillée, du local électrique à l’échelle 1/12, du diorama de la Batcave du projet BATLab112.


Introduction

Le réseau électrique du diorama de la Batcave, développé dans le cadre du projet BATLab112, a pour fonction d’assurer la distribution de l’énergie électrique à l’ensemble des équipements du dispositif. Les quatre systèmes fonctionnels — la plateforme rotative, le pont élévateur, le pont roulant et les bras robotiques — sont pilotés par des consoles de commande dédiées, lesquelles requièrent également une alimentation électrique. En conséquence, la multiplicité des équipements, conjuguée à l’hétérogénéité des niveaux de tension requis, impose la mise en œuvre d’une infrastructure de distribution électrique spécifiquement adaptée.

Pour plus d’informations, voir les articles relatifs à la conception des équipements de la Batcave à l’échelle 1/12 :

Présentation générale

L’ensemble des dispositifs de distribution et de contrôle de l’énergie électrique est centralisé au sein d’un local technique dédié. Ce local assure la fonction de point de raccordement du diorama de la Batcave au réseau électrique, tout en intégrant l’ensemble des équipements nécessaires à la distribution de l’énergie et à son suivi opérationnel. Il abrite notamment le poste de transformation HT/BT ainsi que trois armoires de distribution correspondant aux niveaux de tension requis par les équipements du diorama, à savoir 5 VDC, 6 VDC et 12 VDC.

Structure interne

Présentation générale

A l’échelle 1:1, le module de raccordement, situé en amont du poste HT/BT, permet de raccorder un réseau de distribution électrique Basse Tension (BT), au réseau électrique Haute Tension (HT).

A l’échelle du diorama, l’armoire de raccordement assure le raccordement du réseau électrique de la Batcave, au réseau électrique domestique 230V 50Hz. L’entrée de cette armoire autorise un raccordement à une prise secteur par l’intermédiaire d’un câble électrique de type 3G 1,5 mm2.

Description détaillée

  • Les deux passe-câbles assurent le maintien mécanique du câble en entrée (depuis la prise secteur) et en sortie (vers le convertisseur).
  • Les deux borniers de raccordement assurent la connexion électriques des deux câbles.
  • L’interrupteur sectionneur permet d’isoler le diorama du réseau électrique.

Fonctionnement général

Une fois le raccordement au secteur réalisé, par l’intermédiaire du bornier de raccordement, le basculement de l’interrupteur sectionneur en position haute, permet d’alimenter en énergie électrique le convertisseur de puissance du diorama.

Le basculement de l’interrupteur sectionneur de l’armoire de raccordement en position basse, permet d’isoler complètement le diorama du secteur.

Cette armoire est l’unique point de raccordement au secteur du diorama, afin de garantir la sécurité des utilisateurs.

Modèles 3D

Modèle 3D du presse étoupe, passe câble, utilisé dans les 3 modules du poste HT/BT.
Modèle 3D du bloc de jonction, 230VAC, utilisé comme bornier de raccordement.
Modèle 3D de support de Led, utilisé comme passe câble du module sectionneur.

Modèle 3D des interrupteurs 230VAC utilisés comme sectionneur général du poste HT/BT.

Le convertisseur de puissance

Présentation générale

A l’échelle 1:1, le transformateur est l’équipement central du poste HT/BT. Il assure la transformation de la Haute Tension alternative du réseau de distribution électrique régional, en Basse Tension alternative 230V 50Hz.

A l’échelle du diorama, le transformateur est remplacé par un module – convertisseur de puissance -, qui assure la conversion de la tension secteur alternative 230V 50Hz en basses tensions continues compatibles avec les composants électroniques et actionneurs du projet ; électronique, moteurs…

Description détaillée

  • Les 3 passe-câbles d’entrée assurent le maintien mécanique des câbles :
    • Câble 230VAC, issu de l’armoire de raccordement
    • Câble 12VDC, vers le tableau basse tension
    • Câble des commandes, issu du tableau basse tension.
  • Les 4 passe-câbles d’entrée assurent le maintien mécanique des câbles :
    • Câble 230VAC, issu de l’armoire de raccordement
    • Câble 12VDC, vers le tableau basse tension
    • Câble des commandes, issu du tableau basse tension.
  • Les 4 passe-câbles d’entrée assurent le maintien mécanique des câbles :
    • Câble 5VDC
    • Câble 6V DC
    • Câble 12V DC
  • Le convertisseur 230VAC/12VDC assure la conversion AC/DC de la tension secteur 230V 50Hz.
  • Les convertisseurs DC/DC assure la conversion de la tension 12VDC issue du convertisseur AC/DC en tensions continues plus basses ; 5VDC, 6VDC … compatibles avec les composants électroniques et actionneurs du diorama.
  • La carte électronique des relais assure les commutations des différentes tensions continues de sorties

Fonctionnement général

Lorsque l’interrupteur sectionneur de l’armoire de raccordement est basculé en position haute, le convertisseur 230VAC/12VDC du convertisseur de puissance, est alors alimenté en énergie électrique. Il fournit une tension de 12V continue en sortie. Cette tension alimente alors le panneau basse tension pour contrôler l’alimentation électrique des convertisseurs DC/DC.

Lorsque le convertisseur 230VAC/12VDC est sous tension, et que le bouton d’arrêt d’urgence du panneau basse tension est relâché, un appui sur un des boutons poussoirs du panneau de commande, déclenche la commande d’un relais. Ce relais commute la tension du convertisseur DC/DC correspondant, en sortie du convertisseur de puissance.

Modèles 3D

Modèle 3D de l’alimentation utilisée comme convertisseur 230VAC/12VDC.
Modèle 3D des convertisseurs de tensions 12VDC/6VDC et 12VDC/5VDC.
Modèle 3D des borniers utilisés sur la carte des relais de.commutation des tensions de sortie.
Modèle 3D des relais utilisés pour commuter les tensions de sorties du convertisseur.

Le tableau basse tension

Présentation générale

A l’échelle 1:1, le tableau BT permet de répartir l’énergie électrique sur les différents départs issus du poste de transformation. A l’échelle du diorama, cette armoire centralise les commandes des tensions continues en sortie du convertisseur.

Description détaillée

  • Les deux passe-câbles assurent le maintien mécanique du câble en entrée (depuis la sortie du convertisseur 230VAC/12VDC) et en sortie (vers la carte électronique des relais).
  • Le bornier de raccordement assure la connexion électriques des câbles.
  • La carte électronique – PCB des commandes -, centralise tous les circuits de commande des tensions de sortie du convertisseur de puissance.
  • La carte électronique – PCB des relais -, assure la commutation des différentes tensions de sortie du convertisseur de puissance, sous le contrôle des commandes.
  • Les cartes électroniques sont réalisées en logique câblée, à partir de relais électromagnétiques, de boutons poussoirs et de voyants de visualisation réalisés à partir de LEDs.

Fonctionnement général

Lorsque le convertisseur 230VAC / 12VDC est raccordé au réseau électrique domestique lors du basculement de l’interrupteur sectionneur de l’armoire de raccordement en position haute, il délivre en sortie une tension de 12V DC. Cette tension est alors utilisée pour alimenter en énergie électrique, une carte électronique de commande et une carte de relais qui contrôlent les tensions de sortie du convertisseur de puissance.

Modéles 3D

Modélisation 3D

FreeCAD

Dans cette phase de conception préliminaire, seul le design général de la structure mécanique de la console de commande est modélisé. L’assemblage des différentes sous-parties n’est pas pris en compte ici. Il s’agit avant tout de valider la faisabilité technique de ce design ainsi que son intégration à l’échelle 1/12. Les détails de l’assemblage des différents sous-ensembles se fera lors de la réalisation du premier prototype.

La modélisation du poste HT/BT équipant la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCad V0.19.

Visuels de la conception préliminaires des 3 modules composants le poste HT/BT.

GrabCAD

Les fichiers des modèles 3D utilisés lors de la conception préliminaire du poste HT/BT équipant la Batcave du projet BATLab112 sont téléchargés à partir de la plateforme GrabCAD.

Voir aussi

Articles – Electricité

Articles – Conception détaillée

Conception détaillée d’une armoire de distribution électrique pour le diorama BATLab112

Informations générales

Cet article décrit la conception détaillée d’une armoire de distribution électrique basse tension à l’échelle 1/12 pour le diorama de la Batcave du projet BATLab112. Il expose les contraintes mécaniques et fonctionnelles rencontrées, notamment l’importance d’une structure interne robuste pour maintenir les composants et faciliter les manipulations. Les systèmes réalistes à échelle réduite et leur…

Première publication :

Dernière mise à jour :

Temps de lecture :

7–10 minutes

Introduction

La réalisation du prototype du poste HT/BT du diorama a mis en évidence les limites du mode opératoire initialement retenu pour la fabrication des armoires électriques. En particulier, l’absence de structure interne dédiée ne permet ni d’assurer une rigidité mécanique suffisante pour des manipulations répétées, ni de garantir un maintien adéquat et pérenne des composants internes de l’armoire.

L’objectif de cette démarche est double. Il s’agit, en premier lieu, de concevoir une structure interne générique, applicable à l’ensemble des armoires électriques du diorama de la Batcave. En second lieu, il convient de développer des équipements modulaires destinés à faciliter le câblage de ces armoires à l’échelle 1/12, tout en respectant de manière aussi fidèle que possible les principes de conception, d’implantation et de fonctionnement mis en œuvre à l’échelle réelle.

Pour d’informations :

Fondements du design proposé — Héritage de la phase de parangonnage

Le design présenté dans cet article, s’inscrit dans la continuité des articles précédents mais aussi de la phase de parangonnage des équipements électriques industriels existants. Dans cet article, une analyse systématique des systèmes existants à l’échelle 1 : 1, ainsi que des principes de fonctionnement et d’architecture interne des armoires de distribution, a été conduite afin d’identifier les contraintes techniques et mécaniques applicables à une reproduction à l’échelle 1 : 12. Ces éléments ont servi de base à l’élaboration des choix de conception retenus ici, notamment en matière de structure interne, d’intégration des modules (sectionneur, porte‑fusible) et d’optimisation pour fabrication additive.

Le design actuel reprend et adapte ces principes fondamentaux, en les contextualisant dans le cadre d’une approche modulaire et manufacturable par impression 3D. Cette démarche vise à garantir la fidélité fonctionnelle et mécanique des armoires tout en tirant parti des enseignements issus de la revue des équipements existants et des solutions techniques proposées dans l’article de conception détaillée original.

Pour + d’informations :

Revue des infrastructures de distribution électrique industrielles existantes pour l’adaptation au diorama de la Batcave

L’article examine les infrastructures industrielles de distribution électrique existantes en vue de leur adaptation à un diorama pédagogique représentant la Batcave. Il détaille d’abord la structure fonctionnelle d’un poste HTA/BT, qui abaisse la tension moyenne à basse tension et regroupe les dispositifs de protection, de transformation et de distribution. Ensuite, il analyse les armoires de…

Lire la suite …

Architecture des armoires de distribution électrique à l’échelle 1/12 du diorama de la Batcave

Entrées / Sorties

Les armoires de distribution électrique sont systématiquement dotées d’une entrée d’alimentation et de six sorties. À la date de publication de cet article, ce nombre de sorties excède les besoins liés aux équipements actuellement intégrés au diorama de la Batcave dans le cadre du projet BATLab112. En effet, quatre équipements sont à ce stade en cours de développement : la plateforme rotative, le pont élévateur, le pont roulant et les bras robotiques. Ces dispositifs sont chacun commandés et alimentés en énergie électrique par l’intermédiaire de leurs consoles de commande respectives. Les deux sorties restantes, volontairement non affectées, ont été prévues afin d’anticiper et de faciliter l’intégration d’évolutions fonctionnelles et de nouveaux équipements ultérieurs.

Modules internes

Les armoires de distribution électrique intègrent deux modules internes principaux : un sectionneur et un porte-fusible. Ces deux dispositifs ont été spécifiquement conçus et développés pour répondre aux exigences du projet BATLab112. Leur conception prend en compte les contraintes propres à une réalisation à l’échelle 1/12, tant sur le plan dimensionnel que sur celui de l’assemblage, tout en respectant les principes de fonctionnement, de sécurité et d’architecture habituellement mis en œuvre pour ce type de modules à l’échelle industrielle réelle.

Ces deux modules sont conçus pour être solidarisés à la structure interne au moyen de boulons de type M2, garantissant à la fois un positionnement précis, une fixation mécanique fiable et une facilité de démontage compatible avec les opérations de maintenance et d’évolution du système.

Principe de fonctionnement des armoires de distribution électrique du diorama

Lorsque le sectionneur est basculé en position haute, la tension d’entrée est alors distribuée à l’ensemble des sorties de l’armoire. Les fusibles assurent une fonction de protection contre les surintensités susceptibles de survenir à la suite d’un dysfonctionnement de l’un des équipements du diorama. À l’inverse, lors du basculement du sectionneur en position basse, correspondant à l’ouverture des deux interrupteurs, l’ensemble des circuits de sortie est totalement isolé de la source d’alimentation électrique.

La tension d’entrée applicable à une armoire de distribution électrique peut correspondre à l’une des trois tensions continues utilisées par les équipements du diorama, à savoir 5 VDC, 6 VDC ou 12 VDC. Le courant maximal délivrable en sortie est déterminé conjointement par le calibre des fusibles installés et par la section du câblage interne de l’armoire. Dans sa première version, le dispositif est équipé de fusibles d’un calibre de 1 A par sortie, conduisant à un courant maximal total de 6 A en entrée.

Modélisation 3D de la structure mécanique des armoires électriques du diorama

Screenshot 1 : Structure interne – Aperçu 3D 3/4 face
Screenshot 2 : Structure interne – Aperçu 3D 3/4 arrière

Présentation générale

La réalisation du prototype du poste HT/BT a mis en évidence les limites du mode opératoire retenu pour la fabrication des armoires électriques. En particulier, l’absence de structure interne ne permet pas d’assurer une robustesse mécanique compatible à la fois avec les contraintes d’exploitation imposées par le diorama et avec des manipulations régulières.

La conception d’une nouvelle structure interne vise à remédier à ces insuffisances en permettant la fabrication d’armoires électriques présentant des caractéristiques mécaniques adaptées aux exigences du diorama. Cette structure est spécifiquement destinée à être réalisée par fabrication additive, au moyen de l’impression 3D, afin de garantir précision dimensionnelle, répétabilité et facilité d’évolution du design.

Description détaillée

Screenshot 1

  1. La structure interne intègre des perforations destinées à l’assemblage par boulonnage des enveloppes internes et externes.
  2. Les emplacements pour les 6 connecteurs de type Jack en sorties.
  3. L’emplacement pour le presse-étoupe du câble d’entrée, issu du convertisseur de puissance.
  4. Le design global de cette structure a été optimisé pour permettre une impression 3D sans recours à des supports pour les surplombs, afin de réduire la consommation de matière et de simplifier le processus de fabrication.
  5. La structure interne est pourvue de perçages permettant le boulonnage des armoires sur le sol du local électrique, assurant ainsi leur stabilité lors de la manipulation des portes, des boutons-poussoirs ou des interrupteurs.

Screenshot 2

  1. Renforts latéraux pour accroitre la rigidité de la structure
  2. Chanfrein pour prendre en compte le pli des panneaux de l’enveloppe externe.
  3. Barre de renfort et fixation des équipements internes de l’armoire électrique.
  4. Barre de renfort et fixation des équipements internes de l’armoire électrique.
  5. Barre de renfort et fixation des équipements internes de l’armoire électrique.
  6. Barre de renfort et fixation des équipements internes de l’armoire électrique.

Modélisation 3D du module sectionneur des armoires électriques du diorama

Screenshot 3 : Sectionneur – Aperçu 3/4 face
Screenshot 4 : Sectionneur – Aperçu 3/4 arrière

Présentation générale

Le sectionneur de l’armoire de distribution électrique permet d’isoler le réseau électrique desservi par l’armoire, de l’alimentation en énergie électrique.

Description détaillée

Screenshot 3

  1. Guide de fixation des borniers de câblage
  2. Bornier de câblage d’entrée réalisé à partir d’un domino électrique 230V 1,5mm2.
  3. Structure de montage du sectionneur réalisée par impression 3D.
  4. Deux interrupteurs à bascule comme sectionneur coupe circuit.
  5. Bornier de câblage de sortie réalisé à partir d’un domino électrique 230V 1,5mm2.

Screenshot 4

  1. Patte de fixation du module sectionneur sur la structure interne de l’armoire électrique.
  2. Structure du module sectionneur réalisé par impression 3D.
  3. Perforation pour faciliter le montage des borniers de câblage.

Modélisation 3D du porte fusible des armoires électriques du diorama

Screenshot 5 : Porte fusible – Aperçu 3/4 face
Screenshot 6 : Porte fusible – Aperçu 3/4 face

Présentation générale

Les fusibles protègent les circuits électriques contre les surintensités. Pour protéger les 6 circuits de sorties de l’armoire de distribution, 6 portes fusibles sont donc nécessaires. Cependant, pour des raisons d’encombrement de ces portes fusibles et pour s’assurer que le câblage associé soit simple, la solution retenue repose sur un porte fusible intégré de 6 fusibles plats.

Description détaillée

Screenshot 5

  1. Borniers de câblage des bornes positives des circuits.
  2. Fusibles plats.

Screenshot 6

  1. Borniers de câblage des bornes négatives des circuits.

Modélisation 3D des composants de l’armoire électrique avec FreeCAD

Dans cette phase de conception préliminaire, seul le design général de la structure mécanique de la console de commande est modélisé. L’assemblage des différentes sous-parties n’est pas pris en compte ici. Il s’agit avant tout de valider la faisabilité technique de ce design ainsi que son intégration à l’échelle 1/12. Les détails de l’assemblage des différents sous-ensembles se fera lors de la réalisation du premier prototype.

La modélisation du poste HT/BT équipant la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCad V0.19.

Design 3D

Un aperçu de quelques designs complémentaires conçus spécifiquement pour les besoins du projet BATLab112.

GrabCAD

Les fichiers des modèles 3D utilisés lors de la conception préliminaire du poste HT/BT équipant la Batcave du projet BATLab112 sont téléchargés à partir de la plateforme GrabCAD.

Modèles 3D

Ces modèles, téléchargés depuis la plateforme GrabCAD, sont utilisés dans cette phase de conception détaillée, afin de valider les assemblages mécaniques entre ces différents sous-ensembles.

Voir aussi

Des articles sur l’avancement du réseau de distribution électrique du diorama

Des articles sur la conception détaillée d’autres équipements industriels du diorama à l’échelle 1/12

Poste électrique HT/BT du diorama BATLab112 : conception détaillée d’un prototype pédagogique

Informations générales

L’article présente la conception détaillée et la réalisation du premier prototype fonctionnel du poste électrique HT/BT à l’échelle 1/12 pour le diorama pédagogique de la Batcave du projet BATLab112. Il s’inscrit dans la phase de conception détaillée visant à reproduire avec fidélité les fonctions d’un poste électrique industriel.… Lire la suite →

Première publication :

Dernière mise à jour :

Temps de ecture :

8–12 minutes

Cet article contient des références à des marques commerciales. Ceci n’est en aucun cas un placement de produit ou de la publicité. Ces produits sont cités au titre de la référence qu’ils représentent dans la recherche de solutions techniques dans le contexte du projet BATLab112.

Contexte et objectifs du projet BATLab112

Ce premier prototype fonctionnel du poste électrique de la Batcave du projet BATLab112, a été réalisé suite à sa conception préliminaire, essentiellement destinée à modéliser les enveloppes mécaniques des différents éléments le composant.

La conception détaillée du poste électrique de la Batcave s’inscrit dans l’objectif de réalisme poursuivi par le projet BATLab112 à des fins pédagogiques. À ce titre, les choix de conception opérés visent à reproduire avec la plus grande fidélité possible le fonctionnement de chacun des éléments constitutifs de ce poste électrique, tant sur le plan fonctionnel que didactique.

Les photographies présentées dans cet article illustrent le prototype du poste HT/BT dans son état initial, antérieur à la phase de reprise du design extérieur, engagée en vue d’améliorer le rendu visuel et la cohérence esthétique de l’ensemble.

Présentation Générale du Poste Électrique à l’Échelle 1/12

L’architecture du poste électrique du diorama de la Batcave, dans le cadre du projet BATLab112, s’inspire directement de l’organisation conventionnelle d’un poste électrique industriel réel, identifiée lors de la phase de parangonnage des systèmes existants.

L’armoire de raccordement électrique constitue l’interface entre l’alimentation fournie par le réseau — représentée, dans le cadre du diorama, par une prise 230 VAC 50 Hz — et le réseau électrique interne du diorama. Cette armoire intègre un sectionneur interne permettant d’isoler complètement le réseau du diorama, assurant ainsi une sécurité fonctionnelle et opérationnelle.

Le convertisseur de puissance, ou transformateur, est l’équipement chargé de la transformation de la tension alternative du secteur en tensions continues de basses valeurs, adaptées à l’alimentation des différents équipements du diorama. Quatre niveaux de basses tensions ont été définis en fonction des besoins spécifiques :

  • 5 V DC : alimentation des composants électroniques tels que LED, boutons poussoirs et relais.
  • 6 V DC : alimentation des petits moteurs du pont roulant et de la plateforme rotative.
  • 12 V DC : alimentation des quatre moteurs du pont élévateur.
  • 12 V DC secondaire : alimentation des équipements annexes du diorama, notamment l’éclairage.

L’armoire de commande des basses tensions est dotée d’un panneau de commande permettant de contrôler la mise en marche et l’arrêt de la distribution de ces tensions à l’ensemble du diorama. Sa conception reproduit fidèlement le fonctionnement d’un équipement industriel réel, y compris le principe de câblage basé sur des relais électromécaniques, offrant ainsi une expérience pédagogique complète et réaliste.

Conception et réalisation du convertisseur de puissance

Choix techniques et matériaux de fabrication

La structure interne de ce prototype de convertisseur de puissance est réalisée à partir de carton d’emballage de récupération, constituant une solution simple et fonctionnelle pour le support des composants. La structure externe, dédiée à la finition esthétique du convertisseur, est quant à elle conçue à partir de briques d’emballage alimentaire de jus de fruit, dont la face interne en aluminium contribue à la rigidité et à l’aspect visuel de l’ensemble.

Intégration des convertisseurs DC/DC

Ce premier prototype intègre deux convertisseurs DC/DC permettant de fournir des tensions de 5 VDC et de 6 VDC, répondant aux besoins actuels du projet. La réserve d’espace disponible au sein du boîtier autorise l’intégration ultérieure d’un convertisseur DC/DC supplémentaire, en fonction de l’évolution des exigences fonctionnelles du projet BATLab112.

Sourcing des différents composants électriques

Architecture électrique générale

Panneau basse tension : conception et fonctionnalités

Choix techniques et matériaux de fabrication

La structure interne du convertisseur de ce prototype du convertisseur de puissance est réalisé en carton. La structure externe, assurant la finition esthétique du convertisseur, est réalisée avec des briques d’emballage alimentaire (intérieur en aluminium).

Interface de commande et de signalisation

Le panneau de commande des basses tensions est conçu selon une organisation comparable à celle d’un panneau de commande industriel réel. Il est équipé de quatre boutons poussoirs permettant le pilotage des quatre niveaux de tension requis pour l’alimentation électrique des équipements industriels miniaturisés du diorama à l’échelle 1/12, à savoir le pont roulant, le pont élévateur, la plateforme tournante et les bras robotiques. Des voyants lumineux associés assurent la visualisation de l’état des commandes correspondantes, selon un fonctionnement binaire de type ON/OFF.

À l’instar des installations industrielles réelles, un bouton poussoir d’arrêt d’urgence est intégré au dispositif. Celui-ci permet l’interruption immédiate de l’alimentation électrique des quatre tensions, garantissant l’arrêt simultané de l’ensemble des équipements électriques du diorama.

Carte électronique support des boutons et voyants

La carte électronique intégrée à l’armoire de commande des basses tensions est équipée de quatre relais électromécaniques, permettant de reproduire fidèlement le fonctionnement d’un panneau de commande industriel réel. Le choix d’une commande par boutons poussoirs, fidèle à la réalité, nécessite la mise en œuvre d’un dispositif reposant sur des relais électromécaniques à double contact, assurant une fonction d’auto-maintien.

Chaque action sur un bouton poussoir alimente la bobine du relais correspondant, entraînant la fermeture d’un contact et le maintien de l’état de commande sans action continue de l’utilisateur. L’activation du bouton poussoir d’arrêt d’urgence provoque quant à elle la coupure de l’alimentation électrique des bobines de l’ensemble des relais, entraînant la désactivation simultanée de tous les dispositifs d’auto-maintien et l’arrêt immédiat des équipements commandés.

Sourcing

Schéma électrique de commande des relais avec auto-maintien

Optimisation du nombre de contact de commande

La recherche de composants, présentée dans le paragraphe précédent, met en évidence des relais dont la tension d’alimentation de la bobine est compatible avec la tension 12VDC de sortie du bloc d’alimentation de puissance, mais dont le nombre de contacts est limité à deux. Or, la mise en œuvre des fonctions d’auto-maintien, de commande de la tension de sortie et de pilotage d’une diode électroluminescente utilisée comme voyant de signalisation requiert la disponibilité de trois contacts distincts. Afin de satisfaire cette contrainte fonctionnelle, le schéma électrique proposé repose sur une architecture utilisant deux relais à deux contacts chacun, permettant d’atteindre le nombre de contacts de commande nécessaire.

Schéma électrique d’une commande à relais par auto-maintien

Armoire de raccordement électrique

Contraintes de câblage et de rigidité mécanique

Les structures interne et externe de cette armoire de raccordement sont réalisées avec des briques d’emballage alimentaire de jus de fruit (intérieur en aluminium). Le module interne du sectionneur est réalisé en carton et en brique alimentaire.

Conception du sectionneur électrique

Le sectionneur est constitué de deux interrupteurs capables de supporter des tensions de 230 VAC, intégrés dans une enveloppe assurant à la fois une fonction de support mécanique et un rôle de sécurité, en empêchant l’accès direct aux contacts électriques sous tension. Le raccordement des tensions d’entrée et de sortie en 230 VAC est réalisé, dans ce prototype, à l’aide de dominos électriques. Bien que cette solution ne réponde pas pleinement aux exigences de sécurité relatives à la manipulation, elle présente l’avantage, dans le cadre du développement du prototype, de faciliter la réalisation de relevés de mesure des tensions.

Sourcing

Schéma électrique du sectionneur de l’armoire de raccordement

Principe de fonctionnement du sectionneur électrique du diorama

Le principe de fonctionnement du sectionneur repose sur l’établissement ou la rupture mécanique d’un chemin conducteur entre l’alimentation électrique et le circuit aval. Lorsque le sectionneur est en position fermée, ses contacts fixes et mobiles sont solidarisés, assurant la continuité électrique de l’ensemble des pôles et permettant l’acheminement de l’énergie vers les équipements raccordés.

En position ouverte, l’actionnement du mécanisme provoque l’écartement physique des contacts, créant une coupure visible et garantissant l’isolement électrique du circuit. Cette séparation, réalisée simultanément sur tous les pôles, empêche toute circulation de courant et autorise les opérations de maintenance en conditions de sécurité. Le sectionneur est conçu pour être manœuvré hors charge et pour maintenir de manière stable chacune de ses positions, conformément aux exigences de fiabilité et de sécurité imposées aux dispositifs d’isolement des installations électriques.

Schéma de câblage électrique du sectionneur principal du diorama

Edition des schémas électriques

Les schémas électriques et électroniques du diorama de la Batcave, développé dans le cadre du projet BATLab112, sont réalisés à l’aide de la suite logicielle open source KiCad. Le recours à cet outil permet d’assurer une représentation rigoureuse et normalisée des schémas, en conformité avec les normes techniques en vigueur.

Retour d’expérience sur la conception détaillée

Convertisseur de puissance

Si le revêtement réalisé à partir de briques d’emballage alimentaire permet d’envisager un rendu esthétique globalement satisfaisant, l’emploi de carton pour la structure interne s’est révélé inadapté. En effet, une fois l’ensemble des composants intégrés, la masse du convertisseur excède les capacités mécaniques du carton, entraînant des déformations lors des manipulations nécessaires au câblage interne. Au regard des dimensions de l’équipement, la réalisation de la structure interne en bois apparaît plus appropriée pour les versions ultérieures de ce convertisseur.

Par ailleurs, ce prototype est doté d’une grille d’aération en face avant. Néanmoins, la dissipation thermique liée à la chaleur dégagée par l’alimentation interne 230 VAC / 12 VDC devra faire l’objet d’une analyse plus approfondie, notamment lorsque celle-ci sera sollicitée pour alimenter l’ensemble des équipements électriques du diorama.

Armoire de raccordement

La réalisation des structures interne et externe à partir de briques d’emballage alimentaire ne permet pas d’assurer une rigidité suffisante de l’armoire lorsque celle-ci doit être raccordée à des câbles d’entrée et de sortie de type 3G2,5 afin d’être intégrée au diorama. Compte tenu des dimensions de l’équipement et des contraintes mécaniques associées, le recours à une impression 3D pour la fabrication de la structure interne de la prochaine version de cette armoire apparaît comme une solution plus adaptée.

Par ailleurs, la conception mécanique des charnières de la porte ne s’avère pas satisfaisante, tant du point de vue de la faisabilité technique que de la robustesse. L’intégration de dispositifs de fermeture, tels que des poignées assurant le maintien de la porte en position fermée, devra être prise en compte lors de la conception du prochain modèle de cette armoire.

Panneau Basse tension

Les observations formulées sont identiques à celles précédemment établies pour l’armoire de raccordement. En outre, la conception de la carte électronique supportant les boutons de commande et les voyants lumineux nécessite une révision approfondie, dans l’objectif d’en simplifier l’architecture, d’en améliorer la lisibilité fonctionnelle et d’en faciliter la mise en œuvre.

Voir aussi

Des articles sur l’avancement du réseau électrique du diorama

Des articles sur les modèles opérationnels et prototypes du diorama

Conception préliminaire du poste électrique HT/BT du diorama BATLab112

Informations générales

L’article présente la conception préliminaire du poste électrique HT/BT du diorama BATLab112, détaillant l’architecture, la modélisation des structures mécaniques et le dimensionnement des composants. Il décrit la conversion de la tension secteur 230 V AC en tensions continues adaptées, ainsi que l’intégration des dispositifs de raccordement, de protection et de distribution au sein du réseau électrique…

Première publication :

Dernière mise à jour :

Temps de ecture :

8–12 minutes

Armoire de raccordement électrique : interface secteur du réseau de la Batcave

Le poste HT/BT est l’élément amont du réseau de distribution électrique du diorama de la Batcave du projet BATLab112. Ce poste HT/BT intègre les fonctions suivantes :

  • Le raccordement du diorama au secteur 230V 50Hz
  • Le convertisseur de tension AC/DC
  • La commande des tensions de sorties du convertisseur

Raccordement électrique du diorama au réseau domestique 230 VAC

Module de raccordement électrique du diorama : Transposition à l’échelle 1/12 du diorama

À l’échelle réelle (1:1), le module de raccordement, implanté en amont du poste HT/BT, assure l’interface entre un réseau de distribution électrique basse tension (BT) et un réseau haute tension (HT).

À l’échelle du diorama, cette fonction est transposée au sein d’une armoire de raccordement dédiée, dont le rôle est d’assurer la connexion du réseau électrique de la Batcave au réseau électrique domestique 230 V – 50 Hz. L’entrée de cette armoire autorise un raccordement direct à une prise secteur standard, au moyen d’un câble électrique de type 3G 1,5 mm².

Architecture interne de l’armoire de raccordement du diorama

L’architecture de l’armoire de raccordement au réseau électrique domestique 230VAC repose sur un ensemble de dispositifs mécaniques et électroniques assurant à la fois le raccordement des câbles et la fonction de sectionneur.

  • Deux passe-câbles
  • Deux borniers de raccordement
  • Un sectionneur

Les passe-câbles

Les deux passe-câbles assurent la fixation mécanique et la protection des câbles, tant à l’entrée, en provenance de la prise secteur, qu’à la sortie, vers le convertisseur. Ces dispositifs permettent de maintenir les câbles en position, d’éviter toute traction ou flexion excessive et de prévenir l’usure ou les dommages mécaniques au niveau des points de passage. En garantissant un cheminement contrôlé et sécurisé des câbles, les passe-câbles contribuent à la fiabilité et à la sécurité de l’ensemble du système électrique du diorama.

Les borniers de raccordement

Les deux borniers de raccordement assurent la connexion électrique sécurisée des câbles en entrée et en sortie du système. Ces borniers constituent des points de jonction essentiels, permettant de relier de manière fiable le câble provenant de la source d’alimentation et celui dirigé vers le convertisseur ou les sous-systèmes. Outre leur rôle de connexion, ils facilitent les opérations de contrôle, de maintenance et de remplacement des câbles, tout en garantissant la continuité du circuit électrique et la sécurité des utilisateurs.

Le sectionneur

L’interrupteur-sectionneur joue un rôle essentiel dans la sécurité et la gestion de l’alimentation électrique du diorama. Il permet d’isoler complètement le système vis-à-vis du réseau électrique, interrompant le flux de courant de manière sûre et contrôlée. Cette fonction d’isolement est indispensable lors des opérations de maintenance, de modification du câblage ou en cas de défaillance électrique, afin de protéger à la fois les utilisateurs et les équipements. En outre, le sectionneur garantit que le diorama peut être mis hors tension rapidement et de manière fiable, sans risque d’arc électrique ni de dommage aux composants connectés.

Principe de fonctionnement de l’armoire de raccordement électrique

Une fois le raccordement au réseau secteur réalisé par l’intermédiaire du bornier d’entrée, le basculement de l’interrupteur-sectionneur en position fermée permet l’alimentation en énergie électrique du convertisseur de puissance du diorama.

À l’inverse, le positionnement de l’interrupteur-sectionneur en position ouverte assure l’isolement complet du diorama vis-à-vis du réseau électrique domestique. Cette armoire constitue l’unique point de raccordement au secteur, afin de garantir un niveau élevé de sécurité pour les utilisateurs et de maîtriser l’ensemble des flux énergétiques alimentant le diorama.

Modélisation 3D des composants électriques de l’armoire de raccordement

Modèle 3D du presse étoupe, passe câble, utilisé dans les 3 modules du poste HT/BT.
Modèle 3D du bloc de jonction, 230VAC, utilisé comme bornier de raccordement.
Modèle 3D de support de Led, utilisé comme passe câble du module sectionneur.
Modèle 3D des interrupteurs 230VAC utilisés comme sectionneur général du poste HT/BT.

Le convertisseur de puissance du poste électrique du diorama

Convertisseur de puissance : Transposition à l’échelle 1/12 du diorama

A l’échelle 1:1, le transformateur est l’équipement central du poste HT/BT. Il assure la transformation de la Haute Tension alternative du réseau de distribution électrique régional, en Basse Tension alternative 230V 50Hz.

A l’échelle du diorama, le transformateur est remplacé par un module – convertisseur de puissance -, qui assure la conversion de la tension secteur alternative 230V 50Hz en basses tensions continues compatibles avec les composants électroniques et actionneurs du projet ; électronique, moteurs…

Architecture du convertisseur de puissance

L’architecture du convertisseur de puissance du diorama repose sur un ensemble de dispositifs mécaniques et électroniques assurant à la fois la conversion des niveaux de tension et la distribution sécurisée de l’énergie électrique vers les différents sous-systèmes.

  • Des passes câbles d’entrées et de sorties
  • Un convertisseur 230VAC / 12VDC
  • Des convertisseurs DC/DC
  • Une carte électronique à base de relais électromagnétiques
  • Une infrastructure mécanique

Les passe-câbles d’entrée

Les câbles d’entrée du convertisseur sont maintenus mécaniquement par trois passe-câbles distincts. Ceux-ci concernent le câble d’alimentation secteur en 230VAC provenant de l’armoire de raccordement, le câble de sortie en 12VDC à destination du tableau basse tension, ainsi que le câble de commande issu de ce même tableau. Ces éléments garantissent la tenue mécanique, la protection et le cheminement contrôlé des liaisons électriques.

Les passe-câbles de sortie

En sortie, quatre passe-câbles assurent le maintien mécanique et l’acheminement des câbles correspondant aux différentes tensions continues distribuées, notamment les tensions de 5 V DC, 6 V DC et 12 V DC, destinées à l’alimentation des composants électroniques et des actionneurs du diorama.

Chaîne de conversion électrique AC/DC et DC/DC du diorama

Sur le plan fonctionnel, un convertisseur AC/DC assure la transformation de la tension secteur 230V – 50 Hz en une tension continue de 12VDC. Cette tension intermédiaire est ensuite traitée par des convertisseurs DC/DC, dont le rôle est d’abaisser et de réguler la tension afin de fournir des niveaux adaptés, tels que 5VDC et 6VDC, compatibles avec les exigences électriques des sous-systèmes du diorama.

Carte électronique de commutation à base de relais électromagnétiques

Enfin, une carte électronique dédiée, intégrant des relais de puissance, assure la commutation et la distribution contrôlée des différentes tensions continues de sortie, contribuant à la gestion fonctionnelle et à la sécurisation de l’alimentation électrique globale du diorama.

Principe de fonctionnement du convertisseur de puissance

Lorsque l’interrupteur sectionneur de l’armoire de raccordement est basculé en position haute, le convertisseur 230VAC/12VDC du convertisseur de puissance, est alors alimenté en énergie électrique. Il fournit une tension de 12V continue en sortie. Cette tension alimente alors le panneau basse tension pour contrôler l’alimentation électrique des convertisseurs DC/DC.

Lorsque le convertisseur 230VAC/12VDC est sous tension, et que le bouton d’arrêt d’urgence du panneau basse tension est relâché, un appui sur un des boutons poussoirs du panneau de commande, déclenche la commande d’un relais. Ce relais commute la tension du convertisseur DC/DC correspondant, en sortie du convertisseur de puissance.

Modélisation 3D des composants électriques du convertisseur de puissance

Modèle 3D de l’alimentation utilisée comme convertisseur 230VAC/12VDC.
Modèle 3D des convertisseurs de tensions 12VDC/6VDC et 12VDC/5VDC.
Modèle 3D des borniers utilisés sur la carte des relais de.commutation des tensions de sortie.
Modèle 3D des relais utilisés pour commuter les tensions de sorties du convertisseur.

L’armoire de commande des basses tensions du diorama

Armoire de commande des basses tensions : Transposition à l’échelle 1/12

A l’échelle 1:1, le tableau BT permet de répartir l’énergie électrique sur les différents départs issus du poste de transformation. A l’échelle du diorama, cette armoire centralise les commandes des tensions continues en sortie du convertisseur.

Architecture de l’armoire de commande des basses tensions

L’architecture de l’armoire de commande des basses tensions du diorama repose sur un ensemble de dispositifs mécaniques et électroniques assurant à la fois le raccordement des câbles de distribution des basses tensions et la commutation de ces tensions vers les différents sous-systèmes.

  • Des passe-câbles d’entrées et de sorties
  • Un Bernier de raccordement des câbles
  • Une carte électronique à base de relais électromagnétiques
  • Une carte électronique des commandes manuelles
  • Une structure matérielle

Les passe-câbles d’entrée et de sortie

Les deux passe-câbles assurent le maintien mécanique du câble en entrée (depuis la sortie du convertisseur 230VAC/12VDC) et en sortie (vers la carte électronique des relais).

Le Bornier de raccordement

Le bornier de raccordement assure la connexion électriques des câbles.

La carte électronique des commandes manuelles

La carte électronique – PCB des commandes -, centralise tous les circuits de commande des tensions de sortie du convertisseur de puissance.

La carte électronique des relais de commutation des basses tensions

La carte électronique – PCB des relais -, assure la commutation des différentes tensions de sortie du convertisseur de puissance, sous le contrôle des commandes.

Les cartes électroniques sont réalisées en logique câblée, à partir de relais électromagnétiques, de boutons poussoirs et de voyants de visualisation réalisés à partir de LEDs.

Principe de fonctionnement de l’armoire de commande des basses tensions

Lorsque le convertisseur 230VAC / 12VDC est raccordé au réseau électrique domestique lors du basculement de l’interrupteur sectionneur de l’armoire de raccordement en position haute, il délivre en sortie une tension de 12V DC. Cette tension est alors utilisée pour alimenter en énergie électrique, une carte électronique de commande et une carte de relais qui contrôlent les tensions de sortie du convertisseur de puissance.

Modélisation 3D des composants électriques de l’armoire de commande des basses tensions

Modélisation 3D avec FreeCAD du poste électrique du diorama à l’échelle 1/12

La modélisation 3D du poste électrique du diorama de la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCAD.

Le projet BATLab112 utilise la version 0.21.2 du modeleur 3D FreeCAD pour la conception du diorama de la Batcave à l’échelle 1/12. FreeCAD permet de structurer la conception du diorama en amont de sa fabrication, de visualiser des volumes, vérifier des proportions et anticiper des contraintes techniques. L’utilisation de FreeCAD constitue un support méthodologique rigoureux pour la réalisation précise et cohérente de l’ensemble.

Dans le cadre de cette phase de conception préliminaire, seule la géométrie générale de la structure mécanique de la console de commande est modélisée. L’assemblage détaillé des différentes sous-parties n’est pas abordé à ce stade. L’objectif principal consiste à valider la faisabilité technique du concept retenu, ainsi que son intégration fonctionnelle et dimensionnelle à l’échelle 1/12. La définition précise des modalités d’assemblage des sous-ensembles sera réalisée ultérieurement, lors de la conception détaillée et de la fabrication du premier prototype.

GrabCAD

Les fichiers des modèles 3D utilisés lors de la conception préliminaire du poste HT/BT équipant la Batcave du projet BATLab112 sont téléchargés à partir de la plateforme GrabCAD.

Voir aussi

Des articles sur l’avancement du réseau électrique du diorama

Des articles sur la phase de conception préliminaire du diorama

Revue des infrastructures de distribution électrique industrielles existantes pour l’adaptation au diorama de la Batcave

Le poste HTA/BT : composition, fonctionnement et rôle

Introduction

Un poste HTA/BT constitue un élément fondamental des réseaux de distribution d’énergie électrique, assurant l’interface entre le réseau de moyenne tension et les installations alimentées en basse tension. Il a pour fonction principale d’abaisser le niveau de tension issu du réseau public de distribution HTA — généralement compris entre 15 et 20 kV — vers des niveaux de tension BT adaptés à l’alimentation des équipements industriels, tertiaires ou résidentiels.

Composition d’un poste HTA/BT

Sur le plan de la composition, un poste HTA/BT est structuré autour de plusieurs sous-ensembles fonctionnels. Il comprend en premier lieu un dispositif d’arrivée HTA, intégrant des organes de coupure, de sectionnement et de protection, tels que des cellules HTA équipées d’interrupteurs-sectionneurs ou de disjoncteurs. Le transformateur HTA/BT constitue l’élément central du poste : il assure la transformation électromagnétique de la tension, tout en garantissant l’isolement électrique entre les réseaux amont et aval. En aval du transformateur, les tableaux BT regroupent les dispositifs de protection, de répartition et de commande des départs basse tension, ainsi que les instruments de mesure et de supervision.

Fonctionnement d’un poste HTA/BT

Le fonctionnement d’un poste HTA/BT repose sur une chaîne continue de conversion, de protection et de distribution de l’énergie électrique. L’énergie est acheminée depuis le réseau HTA, contrôlée et protégée à l’entrée du poste, puis transformée en basse tension avant d’être distribuée vers les différents circuits utilisateurs. Les dispositifs de protection assurent la détection et l’élimination des défauts électriques, contribuant à la sécurité des personnes et à la préservation des équipements.

Conclusion

Le rôle du poste HTA/BT dépasse la simple conversion de tension. Il constitue un nœud stratégique du réseau de distribution, garantissant la continuité de service, la sélectivité des protections et la qualité de l’énergie délivrée. À ce titre, le poste HTA/BT s’inscrit comme une infrastructure indispensable à la fiabilité et à la performance globale des systèmes électriques qu’il alimente.

Des exemples inspirant pour le diorama du projet BATLab112

La première photographie illustre un transformateur haute tension dont la conception des modules d’ailettes de refroidissement, disposés sur les flancs, retient particulièrement l’attention. Cette architecture thermique présente en effet de fortes analogies avec celle de convertisseurs à courant continu, susceptibles d’être retenus pour le développement du poste électrique du projet BATLab112, tant du point de vue fonctionnel qu’esthétique.

La deuxième photographie présente un module d’alimentation électrique de secours transportable. Son design constitue une source d’inspiration pertinente pour la conception du convertisseur électrique du projet BATLab112. La géométrie cubique de l’enveloppe favorise une organisation rationnelle du volume interne, permettant l’intégration de l’ensemble des sous-systèmes requis, tels que le convertisseur de tension, les cartes électroniques de relais de commutation et les borniers de câblage. Par ailleurs, le caractère transportable de ce module apparaît pleinement compatible avec les contraintes spécifiques d’installation dans un environnement de type souterrain ou cavernicole.

La troisième photographie montre l’implantation générale d’un transformateur et des armoires de contrôle associées. L’organisation linéaire de l’ensemble, combinée à une disposition compacte et resserrée des armoires, suggère des pistes d’optimisation de l’encombrement global. Cette approche pourrait être transposée avantageusement à la conception du poste électrique du projet BATLab112, en vue d’une utilisation plus efficiente de l’espace disponible.

Armoire industrielle et distribution électrique

Introduction

Dans les installations industrielles, la distribution de l’énergie électrique constitue un enjeu majeur en matière de sécurité, de continuité de service et de performance des systèmes. L’armoire industrielle de distribution électrique s’inscrit au cœur de cette problématique en assurant l’interface entre la source d’alimentation et les équipements consommateurs. Conçue selon des normes strictes, elle regroupe l’ensemble des dispositifs nécessaires à la protection, à la commande et à la répartition de l’énergie électrique au sein d’un site industriel.

Rôle d’une armoire industrielle de distribution électrique

Le rôle principal d’une armoire industrielle de distribution électrique est d’assurer une distribution fiable, sécurisée et maîtrisée de l’énergie électrique vers les différents circuits et équipements d’une installation. Elle permet notamment :

  • la répartition de l’énergie électrique vers plusieurs départs,
  • la protection des personnes et des biens contre les défauts électriques,
  • la commande et le contrôle des équipements alimentés,
  • la surveillance et le diagnostic du fonctionnement du réseau électrique interne.

En centralisant ces fonctions, l’armoire de distribution contribue à la continuité d’exploitation des installations industrielles et facilite les opérations de maintenance, d’évolution ou de dépannage.

Description et constitution de l’armoire

Une armoire industrielle de distribution électrique se présente sous la forme d’une enveloppe métallique ou isolante, conçue pour protéger les composants internes contre les agressions extérieures (poussières, humidité, chocs mécaniques) et garantir la sécurité des opérateurs. Son degré de protection est défini par des indices normalisés, tels que l’indice IP ou IK.

À l’intérieur de l’armoire, les principaux éléments constitutifs sont :

  • les dispositifs de coupure et de sectionnement, permettant l’isolement électrique de l’installation ou d’un circuit spécifique ;
  • les appareils de protection, tels que disjoncteurs, fusibles et dispositifs différentiels, destinés à protéger contre les surintensités, les courts-circuits et les défauts d’isolement ;
  • les organes de commande et de contrôle, incluant relais, contacteurs, automates programmables ou modules de commande ;
  • les dispositifs de mesure et de signalisation, assurant le suivi des grandeurs électriques et l’information de l’état de fonctionnement ;
  • les systèmes de câblage et de répartition, tels que jeux de barres, borniers et chemins de câbles, garantissant une distribution structurée de l’énergie.

L’agencement interne est réalisé selon des règles précises visant à optimiser la dissipation thermique, la lisibilité des circuits et l’accessibilité pour la maintenance.

Principe de fonctionnement

Le fonctionnement d’une armoire industrielle de distribution électrique repose sur une chaîne logique et hiérarchisée de traitement de l’énergie. L’alimentation électrique, issue du réseau ou d’une source de production locale, pénètre dans l’armoire par un organe de coupure général. Cette arrivée est ensuite dirigée vers les dispositifs de protection principaux, qui assurent la sécurité globale de l’installation.

Après cette étape, l’énergie est distribuée vers différents départs électriques, chacun étant protégé et, le cas échéant, commandé indépendamment. Les dispositifs de commande permettent l’activation ou la désactivation des circuits en fonction des besoins opérationnels, tandis que les systèmes de protection interrompent automatiquement l’alimentation en cas de défaut.

Par ailleurs, les dispositifs de mesure et de supervision assurent une surveillance continue des paramètres électriques, permettant d’anticiper les dysfonctionnements et d’optimiser l’exploitation du réseau. L’ensemble de ces fonctions concourt à un fonctionnement sûr, fiable et conforme aux exigences normatives en vigueur.

Conclusion

L’armoire industrielle de distribution électrique constitue un élément fondamental des infrastructures industrielles modernes. Par son rôle central dans la distribution, la protection et la commande de l’énergie électrique, elle garantit la sécurité des installations et la continuité des processus industriels. Sa conception et son fonctionnement reposent sur des principes techniques rigoureux et normalisés, faisant de l’armoire de distribution un système à la fois structurant et stratégique au sein des réseaux électriques industriels.

Voir aussi

Des articles sur l’avancement du réseau électrique du diorama

Des articles sur la recherche d’autres solutions industrielles existantes