La Batcave comme support technologique et pédagogique immersif du projet BATLab112

Crédit : https://dc.fandom.com/wiki/Batman_Vol_1_48

En rassemblant des technologies avancées, des équipements industriels et des dispositifs d’analyse dans un espace restreint, la Batcave apparaît comme un environnement technologique complet. Elle constitue à la fois une vitrine d’innovations et un site quasi-industriel où l’intégration, l’optimisation et l’interaction de systèmes complexes peuvent être observées dans un cadre narratif immersif.… Lire la suite…

Première publication :

Dernière mise à jour :

Temps de ecture :

3–4 minutes

Article précédent :

Un espace où la technologie fonde l’identité du héros

L’un des traits distinctifs fondamentaux de Batman réside dans l’absence totale de pouvoirs surnaturels. Son efficacité repose exclusivement sur son intelligence, sa capacité d’analyse et l’usage stratégique de technologies de pointe rendues accessibles par ses ressources financières considérables. Dans ce contexte, la Batcave occupe une place centrale : loin d’être un simple repaire secret, elle constitue un environnement hautement technologique pensé pour soutenir l’action du justicier et amplifier ses capacités humaines.

L’élément emblématique de cet univers demeure le Batcomputer, véritable symbole de la supériorité technologique de Batman. Ses représentations fictionnelles évoluent au fil des époques, épousant les progrès réels de l’informatique, depuis les premiers systèmes de calcul jusqu’aux dispositifs d’intelligence artificielle avancée. Autour de cet équipement central se déploie un ensemble d’outils technologiques — drones, systèmes de surveillance automatisés, robots d’assistance — qui témoignent de l’actualisation constante du dispositif technique de la Batcave. L’ensemble forme un écosystème technologique dynamique, continuellement renouvelé pour rester en phase avec les avancées contemporaines. Ce caractère évolutif contribue à maintenir l’univers de Batman à la fois crédible, actuel et narrativement stimulant.

Une vitrine technologique et un laboratoire d’intégration

La concentration de technologies diverses au sein d’un même espace confère à la Batcave une dimension de véritable vitrine technologique. Chaque dispositif contribue à illustrer, sous une forme fictionnelle mais cohérente, un domaine particulier de l’innovation : informatique, robotique, systèmes embarqués, automatisation, communication, analyse de données, etc.

Cependant, la Batcave dépasse largement la fonction d’exposition. Elle constitue un environnement d’intégration où des technologies hétérogènes doivent coexister dans un milieu confiné, irrégulier et fortement contraint — celui d’une grotte naturelle. Les impératifs d’optimisation spatiale, d’ergonomie, de sécurité et d’efficacité opérationnelle imposent une ingénierie particulièrement sophistiquée. Cette configuration permet d’observer, même dans la fiction, les problématiques réelles que rencontrent les environnements techniques avancés : implantation des équipements, gestion énergétique, contrôle des systèmes, interactions homme–machine, compatibilité entre modules technologiques.

Un espace aux caractéristiques industrielles marquées

Au-delà des dispositifs informatiques et électroniques, la Batcave intègre également des équipements relevant de l’univers industriel. Les récits de Batman présentent ainsi des outils caractéristiques des ateliers de production ou des sites de maintenance : bras robotiques, plateformes tournantes, ponts roulants, stations de réparation et de diagnostic, infrastructures de levage ou de manutention. Ces dispositifs ne relèvent pas uniquement de l’imaginaire : ils répondent à des besoins fonctionnels liés à la construction, à la modification et à la maintenance de nombreux véhicules et équipements du héros.

À ce titre, la Batcave peut être appréhendée comme un véritable site industriel miniaturisé, où coexistent une pluralité de machines, d’outils et de systèmes autonomes dans un espace extrêmement restreint. Cette caractéristique accentue la complexité des interactions techniques et met en lumière les enjeux d’organisation, de synchronisation des activités et de gestion des risques.

Un décor ludique pour comprendre l’interaction des technologies

L’intérêt principal de la Batcave réside dès lors dans sa capacité à offrir, sous une forme narrative et ludique, une représentation densifiée de l’univers technologique contemporain. En concentrant dans un même lieu des technologies issues de domaines variés et en les insérant dans un environnement spatialement et physiquement contraint, la Batcave constitue un modèle pertinent pour appréhender les défis de l’ingénierie intégrée. Elle permet d’illustrer la complexité des chaînes technologiques, leurs interdépendances et les impératifs de performance globale qui en découlent.

En ce sens, la Batcave n’est pas seulement un décor emblématique : elle fonctionne comme un environnement technologique complet, où convergent innovation, ingénierie et mise en œuvre opérationnelle. Cet espace fictif offre ainsi un cadre particulièrement fécond pour réfléchir à l’articulation des technologies et à la manière dont elles cohabitent, se complètent et se renforcent mutuellement au service d’un objectif unique.

Voir aussi

Fil de lecture : La genèse du projet BATLab112

Le diorama pédagogique du projet BATLab112

Bras robotique – Prototype 1

Cet article présente la réalisation du prototype des bras robotiques qui équipent l’atelier de la Batcave du projet BATLab112. L’objectif de ce prototype est de permettre la validation de la conception du design général ainsi que le choix de fabrication par impression 3D.


Modélisation 3D

Logiciel de CAO 3D

La modélisation 3D des bras robotiques de la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCad V0.17.

Des bras robotiques à 4 degrés de liberté

Les bras robotiques disposent de 4 degrés de liberté, autrement dit 4 articulations. Un moteur installé dans chaque articulation en assure sa rotation.


Fabrication

Impression 3D des pièces mécaniques

Les impressions 3D des premières pièces de ce prototype sont réalisées par Paul membre de la communauté de soutien du projet BATLab112, avec une imprimante ANET A8.

Motorisation des articulations

Le choix des moteurs équipant les articulations est déterminant en terme de performance pour les bras robotiques en termes de vitesse et de fluidité des mouvements. Les moteurs sélectionnés pour la réalisation de cette première version sont des servomoteurs.

Servomoteurs

Qualification de ce choix

Avantages

Alimentation électrique en courant continu
- Intégration technique facilité
- Compatibilité avec l'électronique de commande (Arduino notamment)
Asservissement en position angulaire
- Commande simplifiée
- Conforme avec la logique mécanique des articulations
Maintien de la position
- Commande simplifiée
Dimensions réduites
- Intégration mécanique facillité
Approvisionnement et coût

Inconvénients

Technologie
Cette technologie n'est pas conforme avec celle des robots industriels. Cet aspect sera pris en compte dans une futur version
Couple
Capacité incertaine à assurer le mouvement

Voir le calcul de masses en fonction du couple

Tests de fonctionnement

Electronique de commande

Ce test de fonctionnement utilise une électronique de commande décrite dans l’article suivant :

Commande du bras robotique .V1

Présentation de la réalisation de la première version de l’électronique de commande des bras robotisés équipant l’atelier de la Batcave du projet BATLab112.

Pour valider cette électronique de commande, une maquette du bras robotique a été réalisée en emballage alimentaire. Le résultat obtenu est plutôt satisfaisant, compte tenu d’un niveau passable de qualité de fabrication, comme le montre la vidéo suivante.

Alimentation électrique

Le circuit d’alimentation électrique utilisé est le même que celui pour valider la commande électronique. Ce circuit est constitué des composants suivants :

Un convertisseur 230VAC / 12VDC – 180 W pour l’alimentation électrique des 2 convertisseurs suivants.

Source : www.amazon.fr

Un convertisseur 12V DC / 5V DC – 50W pour l’alimentation électrique de l’électronique de commande et de la carte Arduino Due.

Source : www.amazon.fr

Un convertisseur 12VDC / 6VDC – 60W pour l’alimentation électrique des 4 servomoteurs.

Source : www.amazon.fr

Test fonctionnel mécanique

Configuration mécanique

Le montage utilisé comprend la tourelle et l’épaule en impression 3D associé uniquement au bras, réalisé en emballage alimentaire.

Résultats

Les résultats des premiers tests sont plutôt décevants. Le bras entre en oscillation très rapidement.
Plusieurs pistes sont à explorer pour résoudre ce problème :
– Le découplage de l’alimentation électrique des servomoteurs.
– La modification de la fréquence des signaux PWM émis par la carte Arduino.
– Le changement du servomoteur de l’épaule.

A suivre !…

Commande du bras robotique .V1

Cet article présente la réalisation de la version 1 de l’électronique de commande des bras robotiques équipant le diorama de la Batcave du projet BATLab112.

Cahier des charges

  1. Objectif général
  2. Spécifications fonctionnelles
  3. Spécifications techniques

Objectif général

L’objectif opérationnel est de réaliser une maquette électronique assurant la commande en mode manuel et en mode automatique des bras robotisés équipant le diorama de la Batcave du projet BATLab112. Cette maquette doit permettre dans un premier temps, une commande des bras robotiques suivant trois modes de fonctionnement : Mode manuel, Mode automatique, Mode apprentissage.

L’objectif pédagogique consiste à se familiariser avec les principes de commande des servomoteurs.

Spécifications fonctionnelles

La sélection des différents mode de fonctionnement des bras robotiques par l’opérateur doit s’effectuer par des boutons poussoirs. Des voyants assurent la visualisation des états de fonctionnement.

Mode manuel

En mode manuel, les 2 bras robotiques sont commandés indépendamment. La commande des articulations est réalisée par l’intermédiaire de potentiomètres rotatifs. Cette commande doit s’effectuer en temps réel. La rotation de l’axe d’un potentiomètre doit entrainer la rotation de l’articulation correspondante.

Mode automatique

En mode automatique, les 2 bras robotisés sont commandés, indépendamment ou simultanément, suivant des consignes différentes. La commande des articulations est gérée par une unité de contrôle dans laquelle sont enregistrées l’ensemble des consignes nécessaires.

Mode apprentissage

En mode apprentissage, les 2 bras robotisés sont commandés indépendamment ou simultanément. L’enchainement des positions à apprendre pour chaque bras robotisé est défini par l’utilisation des commandes du mode manuel. La restitution de l’enchainement des positions enregistrées pour chaque bras est réalisée en mode automatique.

Spécifications techniques

Les actionneurs à commander

Chaque articulation des bras robotiques est équipée d’un servomoteur. Chaque bras est ainsi équipés de 4 servomoteurs.

L’unité de contrôle

L’unité de contrôle est une Carte Arduino Due.


Listes du matériel

Liste du matériel support

DésignationQtéRéférenceSource
Platine de prototype1Breadboard 830 NeufTechwww.amazon.fr
Alimentation 5VDC2USB
Alimentation 6VDC1Servomoteurs

Remarque : Les composants des alimentations électriques seront spécifiquement traités dans un prochain article.

Liste des composants utilisés

DésignationQtéRéférenceSource
Unité de contrôle1Carte Arduino Duestore.arduino.cc
Bouton rotatif8Potentiomètrewww.amazon.fr
Bouton poussoir6Bouton poussoir tactilewww.amazon.fr
Voyant rouge2Led 3mm rougewww.amazon.fr
Voyant bleu3Led 3mm bleuwww.amazon.fr
Voyant vert5Led 3mm vertewww.amazon.fr
*9Résistance

Schéma de câblage

Dans le cadre du projet BATLab112, les schéma électriques ou électroniques sont réalisés avec le logiciel KICAD. Vous pouvez télécharger le fichier du schéma de câblage au format PDF par le lien qui suit.


Code Arduino

Commentaires concernant ce code

Le code présenté ici est une première approche pour mettre en oeuvre les fonctions nécessaires aux commandes des servomoteurs et valider le principe général de commande de la maquette. Ce code n’est donc pas optimisé.


Validation technique et fonctionnelle

La maquette du bras robotisé

Cette maquette est réalisée pour les besoins de la validation technique et fonctionnelle de l’électronique de commande associée au code développé pour la carte Arduino Due qui pilote l’ensemble.

Cette maquette est réalisée avec des emballages de briques de jus de fruit. Cette matière légère, est suffisamment résistante pour supporter les assemblages nécessaires (ruban adhésif + boulon). Elle présente aussi une face dont l’état de surface est semblable à celui de l’aluminium, ce qui donne un rendu plutôt satisfaisant.

Cette maquette ne respecte pas fidèlement le design conçu en modélisation 3D et présente des défauts de fabrication qui induisent des perturbations dans les mouvements telles que des vibrations.

La vidéo du mode automatique


Conclusions

Electronique de commande

Ces tests permettent de valider le montage de l’électronique de commande des servomoteurs.

Trois points d’améliorations sont identifiés pour être intégrés dans les futures versions.

  • Point n°1 : Commandes manuelles
    • Constat : Les actions sur les potentiomètres de commande des servomoteurs impliquent l’usage d’un tournevis.
    • Evolution : Equiper les potentiomètres de boutons
  • Points n°2 : Enregistrement des positions en mode automatique
    • Constat : Les positions prédéfinies du mode automatique nécessitent la programmation de la Carte Arduino Due.
    • Evolution : Disposer d’un interface plus élaboré que des boutons poussoirs pour enregistrer ces positions sans avoir recours à la re-programmation systématique de la carte (exemples : clavier + écran ou écran tactile).
  • Points n°3 : Enregistrement des positions en mode apprentissage
    • Constat : Le nombre de positions disponible dans le mode apprentissage est limité à 5, ce qui est insuffisant pour envisager des enchaînement de trajectoires complexes.
    • Evolution : Disposer d’un interface plus élaboré que des boutons poussoirs et des Leds pour enregistrer ces positions (exemples : clavier + écran ou écran tactile).

Arduino Due + Code

Ces tests permettent de valider l’utilisation de la Carte Arduino Due et sa capacité à supporter le code nécessaire à la commande des servomoteurs.

Un point d’amélioration est identifié pour être intégré dans les futures versions.

  • Point n°4 : Codage de trajectoire plus fluide
    • Constat : Dans la démonstration réalisée en mode automatique les servomoteurs sont pilotés les uns après les autres pour atteindre chacune des positions. Cette méthode induit des mouvements lents et décomposés.
    • Evolution : Développer un pilotage simultané des servomoteurs pour obtenir des mouvement plus fluides et rapides

Servomoteurs

Ces tests permettent de valider l’utilisation de 3/4 servomoteurs comme actionneurs des articulations des bras robotisés. Une effet, le servomoteur utilisé pour l’articulation de l’épaule semble manqué par moment de couple. Cependant, compte tenu de la qualité de fabrication de la maquette qui n’est pas optimum il est difficile de conclure.