Story – Electricité – 002

Categorie :

Légende :

Implantation des 4 armoires de distribution électrique dans le diorama de la Batcave.

  • 1 Distribution électrique 5VDC : Electronique des consoles de commande.
  • 1 Distribution électrique 6VDC : Moteurs de la plateforme rotative et pont roulant.
  • 1 Distribution électrique 12VDC : Moteurs du pont élévateur
  • 1 Distribution électrique 12VDC : Autres équipements du diorama ; éclairage …

Story – Electricité – 001

Categorie :

Légende :

Implantation du poste électrique HT/BT dans le diorama de la Batcave.

  • 1 Armoire de raccordement électrique du diorama au réseau électrique 230V 50Hz.
  • 1 Armoire électrique de commande des différentes tensions en sortie du convertisseurs ; 5VDC 6VDC 12VDC
  • 1 Transformateur (Convertisseur) 230V 50Hz / 12VDC équipé de deux convertisseurs 5VDC et 6VDC

Arduino et mise en mouvement d’un diorama : genèse technique du projet BATLab112

L’origine de ma réflexion concernant l’usage d’un diorama comme support pédagogique s’inscrit initialement dans une démarche centrée sur la commande de bras robotiques. Cette orientation répondait pleinement à mon objectif de renouer avec des disciplines telles que l’électronique, l’automatisme et la robotique. Elle s’articulait également avec l’intérêt croissant que je portais à la technologie Arduino. Ayant étudié, au cours de mon cursus, la programmation de microcontrôleurs et d’automates programmables, j’ai été particulièrement impressionné par la simplicité d’utilisation et le potentiel offert par les cartes Arduino.

Cette réflexion serait probablement demeurée au stade théorique — limitée à quelques esquisses conceptuelles et fichiers de modélisation 3D conçus sous FreeCAD — sans un événement déterminant pour la suite du projet : la réception, à titre de don, d’une carte Arduino Due. Ce geste a constitué un véritable catalyseur, me conduisant à passer de la conceptualisation à l’expérimentation concrète. J’ai ainsi entrepris de me familiariser avec l’environnement matériel et logiciel propre à cette carte, prélude au développement d’une première maquette de bras robotique pilotée par l’Arduino Due.

Malgré les imperfections inhérentes à cette première construction, cette maquette a constitué une étape décisive en rendant le projet tangible et dynamique. Elle a renforcé ma motivation à poursuivre son développement. Je suis pleinement conscient que cette avancée doit beaucoup à Rémi, membre de ma famille et généreux donateur de la carte, dont le geste a joué un rôle déterminant dans l’évolution du projet. 

Quelques années plus tard, dans le cadre du développement du projet BATLab112, j’ai été amené à mobiliser d’autres modèles de cartes Arduino, parmi lesquels les cartes Uno et Mega, ainsi qu’un ensemble de modules complémentaires tels que des capteurs divers et des écrans tactiles. Le modèle de console de commande conçu pour piloter les différents systèmes du diorama à l’échelle 1/12 intègre notamment deux cartes Arduino Mega. Celles-ci assurent à la fois la gestion de l’affichage sur deux écrans tactiles et l’interprétation des commandes émises par l’utilisateur.

Câblage électrique du diorama

Informations générales

Cet article propose une analyse technique approfondie des choix relatifs au câblage du réseau électrique du diorama pédagogique de la Batcave, reproduisant à l’échelle 1/12 une infrastructure électrique fonctionnelle. Il s’inscrit dans le cadre de la documentation technique du projet, en explicitant la conception et le dimensionnement du réseau de distribution électrique depuis la sortie…

Première publication :

Dernière mise à jour :

Temps de ecture :

8–12 minutes

Article précédent :

Article suivant :


Introduction

Cet article propose une analyse technique approfondie des choix relatifs au câblage du réseau électrique du diorama pédagogique de la Batcave, reproduisant à l’échelle 1/12 une infrastructure électrique fonctionnelle. Il s’inscrit dans le cadre de la documentation technique du projet, en explicitant la conception et le dimensionnement du réseau de distribution électrique depuis la sortie du convertisseur de puissance jusqu’aux consoles de commande. Cette étude méthodique aborde successivement la structuration du réseau de distribution, l’architecture interne des armoires électriques, les bilans de courant nécessaires à la définition des sections des câbles d’entrée et de sortie, ainsi que les critères retenus pour assurer une chute de tension conforme aux exigences fonctionnelles et de sécurité. Par cette démarche, l’article vise à clarifier les principes de câblage qui garantissent l’alimentation adéquate des éléments actifs du diorama, tout en respectant des contraintes techniques propres à un modèle réduit fonctionnel.

Architecture du réseau électrique du diorama

Le réseau électrique du diorama de la Batcave est conçu pour assurer la distribution de l’énergie nécessaire à l’alimentation des composants actifs, tels que les moteurs, les écrans, les capteurs et les dispositifs d’éclairage à LED. Son architecture est structurée en quatre sous-ensembles fonctionnels distincts.

  • Le poste HT/BT, implanté au niveau −2 du diorama au sein du local électrique, assure le raccordement au réseau domestique 230 V – 50 Hz et la conversion de la tension secteur en très basses tensions continues (12 V, 6 V et 5 V), adaptées aux exigences des différents équipements.
  • Les armoires de distribution, également situées dans le local électrique, permettent la démultiplication et la répartition de ces tensions vers les consoles de commande.
  • Le panneau de raccordement, implanté au niveau −1, centralise l’ensemble des liaisons issues des capteurs et des armoires de distribution avant leur connexion aux consoles.
  • Les consoles de commande, situées au même niveau, assurent le pilotage des composants actifs du diorama en intégrant les commandes manuelles, automatiques et les informations issues des capteurs.

Détail du réseau de distribution électrique vers les consoles de commande des équipements industriels du diorama

Le câblage interne du poste HT/BT ayant déjà fait l’objet d’une étude propre, cet article se focalise sur les armoires de distribution, le câblage électrique depuis la sortie du convertisseur de puissance jusqu’aux consoles de commande.

Armoires de distribution électrique du diorama

Le câblage du réseau de distribution électrique doit être conçu en prenant en considération l’ensemble des liaisons, tant en entrée qu’en sortie des armoires de distribution, ainsi que leur câblage interne. Les conducteurs d’entrée se prolongent au sein des armoires par le câblage interne, organisé dans la colonne descendante située sur la partie gauche de celles-ci. À l’inverse, les conducteurs associés à la colonne montante, disposée sur la partie droite des armoires, assurent la continuité du câblage interne vers l’extérieur et se prolongent par les câbles de sortie en direction des consoles de commande.

Câblage interne des armoires de distribution électrique

Les câbles d’entrée

Les câbles d’entrée, issus du convertisseur de puissance, assurent l’alimentation électrique de l’armoire de distribution. Ils pénètrent dans celle-ci par l’intermédiaire du presse-étoupe « Supply Input », avant d’être raccordés aux interrupteurs-sectionneurs. En aval de ces dispositifs de coupure, les conducteurs sont connectés au porte-fusibles de type Blade Fuse Holder. L’intensité du courant électrique circulant dans les câbles d’entrée correspond à la somme des intensités des courants délivrés par les six voies de sortie de l’armoire.

Les câbles de sortie

Les câbles de sortie sont prélevés sur chacune des six voies du porte-fusibles et raccordés aux bornes d’un connecteur de sortie de type Output Jack. L’intensité du courant circulant dans chaque paire de conducteurs est dimensionnée en fonction des besoins énergétiques d’une seule console de commande, pour la tension fournie par l’armoire de distribution.

Bilan électrique du diorama

Introduction

Le bilan électrique constitue une étape fondamentale dans le dimensionnement d’un réseau électrique, en permettant d’évaluer de manière globale et cohérente les besoins énergétiques d’un système. Il repose sur l’identification et la quantification des puissances et des courants associés à l’ensemble des charges alimentées, en tenant compte de leurs régimes de fonctionnement et de leurs conditions d’exploitation. Cette approche analytique vise à assurer l’adéquation entre les sources d’alimentation, les dispositifs de protection et les conducteurs, tout en garantissant la continuité de service, la sécurité des installations et la conformité aux contraintes normatives.

Métrique du bilan électrique des composants du diorama

Ce bilan électrique a pour but d’évaluer les ordres de grandeur des courants électriques, véhiculés par les câbles, afin de pouvoir en définir leur section. Ce bilan électrique porte sur les valeurs suivantes :

CaractéristiquesDésignation
P0 (mW)Puissance à vide en milli-Watt
Pn (mW)Puissance nominale en milli-Watt
Un (V)Tension nominale en Volt
I0 (mA)Courant à vide en milli-Ampère
In (mA)Courant nominal en milli-Ampère
Is (mA)Courant de décrochage en milli-Ampère ( Pour les moteurs 6VDC )

Information complémentaire

Il est important de noter que ce bilan électrique ne prend pas en compte l’alimentation en énergie électrique des 4 moteurs 12VDC du pont élévateur. Une armoire électrique spécifique au pont élévateur sera développée ultérieurement dans le projet.

Bilan électrique des armoires de distribution 12VDC

Les tensions de 12VDC sont utilisées pour alimenter en énergie électrique les deux Cartes Arduino Mega qui pilotent les deux écrans tactiles de la console. Le tableau suivant présente les bilans électriques d’une carte Arduino Mega à vide et d’un écran tactile TFT 2,8″ en fonctionnement nominal. La somme de ces valeurs correspondent aux valeurs utiles en entrée de la Console de commande.

MatérielP0(mW)Pn(mW)Un(V)I0(mA)In(mA)
Carte Arduino Mega (1)630(*)1252(*)
Ecran TFT 2,8″ (2)(**)3303,3(**)100
Total (Arduino + Ecran) x2192012160

Bilan électrique des armoires de distribution 6VDC

Les tensions de 6VDC sont utilisées pour alimenter en énergie électrique les mini moteurs de la plateforme rotative et du pont roulant, via la console de commande. Le tableau suivant présente le bilan électrique pour le moteur 6VDC 300 RPM de la plateforme rotative et les 2 moteurs 6VDC 10 RPM du pont roulant ainsi le contrôleur L298N.

MatérielPn(mW)Un(V)I0(mA)In(mA)Is(mA)
Mini Moteur 6VDC 10 RPM (1)120610201000
Mini Moteur 6VDC 300 RPM (1)54065090300
Contrôleur L298N (2)4206(*)702000
Total 12006702002300

Bilan électrique des armoires de distribution 5VDC

Les tensions de 5VDC sont utilisées pour alimenter en énergie électrique les cartes électroniques du panneau de commande et les relais implantées dans la console de commande. Le tableau suivant présente le bilan électrique pour les composants actifs ; relais et leds. La carte électronique des relais contient 5 relais. La carte électronique du panneau des commandes contient 7 leds. Pour ce calcul, nous considérons que tous les relais et toutes les leds peuvent être actifs en même temps.

MatérielPn(mW)Un(V)In(mA)
Relais 5VDC (1)450590
Led 3mm Rouge50510
Total Carte Relais (Relais x5)22505450
Total Panneau de Commande (Led x7)350570
Total Electronique Console de Commande26005520

Section des câbles électriques du diorama

Le dimensionnement des sections de câble électrique constitue un élément essentiel de la conception des réseaux de distribution, car il conditionne à la fois la sécurité, la fiabilité et la performance des installations. Il repose sur l’analyse des courants à transporter, des longueurs de liaison et des conditions d’exploitation, afin de limiter l’échauffement des conducteurs et de maîtriser les chutes de tension. Cette démarche intègre également les exigences normatives et les dispositifs de protection, garantissant une alimentation électrique adaptée aux charges tout en assurant la pérennité de l’infrastructure.

Section des câbles d’entrée

Les tableaux suivants, présentes pour chacune des armoires électriques, l’impact du choix de section des câbles d’entrée en fonction du résultats des bilans électriques précédents. La longueur des câble d’entrée est fixée à 1m.

Armoire de distribution 12VDC

La valeur de l’intensité du courant électrique prise pour ce calcul est de 400 mA pour une console de commande, en prenant 20% de marge par rapport au résultat du bilan électrique précédent. Dans la perspective où 6 consoles de commandes sont alimentées en énergie électrique par les 6 sorties de l’armoire de distribution, la valeur de l’intensité du courant électrique prise en référence est de 6 x 400 = 2400 mA.

S (mm2)I(mA)L (m)R (ohm)△U(mV)△U(%)
0,5240010,03720,6%
1240010,02480,4%
1,5240010,01240,2%

Armoire de distribution 6VDC

L’armoire de distribution électrique est dimensionnée pour 6 sorties. Le bilan électrique prend en compte l’utilisation de 2 sorties seulement (Plateforme et Pont roulant). Par conséquent, la valeur de l’intensité du courant électrique est multipliée par 3, soit un total de 600 mA. La valeur de l’intensité du courant électrique prise en référence pour ce calcul est de 720 mA, en prenant 20% de marge, par rapport au résultat du bilan électrique.

S (mm2)I(mA)L (m)R (ohm)△U(mV)△U(%)
0,572010,0321,60,4%
172010,0214,40,2%
1,572010,017,20,1%

Armoire de distribution 5VDC

La valeur de l’intensité du courant électrique prise pour ce calcul est de 630 mA, en prenant 20% de marge, par rapport au résultat du bilan électrique. Dans la perspective ou 6 consoles de commandes sont alimentées en énergie électrique par les 6 sorties de l’armoire de distribution, la valeur de l’intensité du courant électrique prise en référence est de donc de 6 x 630 = 3800 mA.

S (mm2)I(mA)L (m)R (ohm)△U(mV)△U(%)
0,5380010,031142,3%
1380010,02761,5%
1,5380010,01380,8%

Conclusion

Une section de câble au moins égale à 0,5mm2 est suffisante pour obtenir une chute de tension en ligne inférieure à 1% pour les armoires de distribution électrique de 12VDC et 6VDC. Par contre, une section de câble au moins égale à 1,5mm2 est nécessaire pour obtenir une chute de tension inférieure à 1% pour l’armoire de distribution électrique 5VDC.

Section des câbles de sortie

Armoire de distribution 12VDC

La valeur de l’intensité du courant électrique prise en référence est de 200 mA en prenant une marge de sécurité d’au moins 20% par rapport à la valeur du bilan électrique.

S (mm2)I(mA)L (m)R (ohm)△U(mV)△U(%)
0,520020,07140,1%
120020,036< 0,1%
1,520020,024< 0,1%

Armoire de distribution 6VDC

En prenant en compte la configuration la plus sévère (2 moteurs 300 RPM + 1 Contrôleur L298N), la valeur de l’intensité du courant électrique prise en référence est de 200 mA, en prenant une marge de sécurité d’au moins 20% par rapport à la valeur du bilan électrique.

S (mm2)I(mA)L (m)R (ohm)△U(mV)△U(%)
0,520020,07140,2%
120020,0360,1%
1,520020,024< 0,1%

Armoire de distribution 5VDC

La valeur de l’intensité du courant électrique prise en référence est de 650 mA en prenant une marge de sécurité d’au moins 20% par rapport à la valeur du bilan électrique.

S (mm2)I(mA)L (m)R (ohm)△U(mV)△U(%)
0,565020,07460,9%
165020,03200,4%
1,565020,02130,3%

Conclusion

Une section de câble au moins égale à 0,5mm2 est suffisante pour obtenir une chute de tension en ligne inférieure à 1% pour les 3 armoires de distribution électrique.

Bilan de dimensionnement du câblage du réseau électrique du diorama

CâbleLongueurSectionTypeAWG (1)
Depuis Convertisseur vers Armoire1 m1,5 mm2Cuivre15
Depuis Armoires vers Consoles2 m0,5 mm2Cuivre20

Voir aussi

Des articles relatifs à la conception et la fabrication du réseau électrique du diorama

Conception de PCB avec FreeCAD

Introduction

Le processus de conception d’un circuit imprimé (PCB) comporte une étape déterminante : l’implantation des composants électroniques. La qualité de cette implantation influence directement les performances du routage, c’est-à-dire l’organisation des pistes reliant les composants entre eux. Pour optimiser cet agencement, des logiciels spécialisés proposent des solutions fondées sur divers paramètres, tels que le nombre de couches disponibles, les priorités fonctionnelles ou encore les contraintes de fabrication.

Dans le contexte du projet BATLab112, cette phase d’implantation revêt une importance particulière, en raison de contraintes spécifiques liées à la reproduction d’un environnement technique fonctionnel à l’échelle 1/12. L’utilisation de FreeCAD permet de visualiser et d’anticiper ces contraintes grâce à la modélisation 3D intégrée.

Ergonomie et cohérence fonctionnelle à l’échelle 1/12

La première contrainte concerne l’intégration des composants selon une logique d’ergonomie réaliste. Sur le PCB dédié aux commandes manuelles de la console, plusieurs éléments — boutons poussoirs, interrupteurs, voyants lumineux — doivent être positionnés conformément à une logique d’utilisation proche de celle d’un pupitre réel.

Ainsi, la disposition ne peut être arbitraire :

  • chaque voyant doit se situer à proximité immédiate de la commande qu’il signale ;
  • l’ensemble des commandes doit suivre un ordre cohérent, garantissant lisibilité, intuitivité et continuité d’usage.

Cette approche vise à préserver la valeur pédagogique et immersive du diorama technique, en assurant une correspondance entre interaction utilisateur et organisation fonctionnelle.

Contraintes de volume et d’intégration mécanique

La seconde contrainte d’implantation concerne l’intégration mécanique des composants. Chaque élément doit présenter un volume compatible avec les limites imposées par la structure du diorama. L’épaisseur totale du PCB, la hauteur des composants, ainsi que l’espace disponible dans les caissons ou parois constitutifs du modèle réduisent la liberté d’implantation classique.

L’usage de FreeCAD offre ici un avantage déterminant : la modélisation 3D permet de vérifier la compatibilité dimensionnelle, d’anticiper les conflits d’encombrement et d’ajuster précisément les choix d’implantation.

Conclusion

En conclusion, l’usage d’un logiciel spécialisé dans l’implantation et le routage de PCB ne garantit pas une prise en compte satisfaisante des deux contraintes majeures identifiées — l’ergonomie fonctionnelle à l’échelle 1/12 et l’intégration mécanique des composants. En effet, ces outils opèrent généralement sans lien direct avec l’environnement mécanique réel du projet, ce qui limite leur capacité à assurer une cohérence entre implantation électronique et contraintes structurelles.

Pour cette raison, j’ai choisi de réaliser la phase d’implantation au sein de FreeCAD, déjà utilisé pour la conception du design mécanique du dispositif. Cette intégration dans un environnement unique de modélisation 3D permet de visualiser de manière globale et précise l’impact des choix d’implantation des composants sur l’architecture générale de l’équipement dans lequel le PCB doit s’insérer. Une telle démarche favorise la cohérence entre électronique et mécanique, condition essentielle à la qualité et à la pertinence pédagogique du projet BATLab112.

Avancement du diorama : articles dédiés à l’utilisation de FreeCAD dans la conception 3D

Local électrique – Conception Détaillée – V1

Cet article présente la conception détaillée, du local électrique à l’échelle 1/12, du diorama de la Batcave du projet BATLab112.


Introduction

Le réseau électrique du diorama de la Batcave, développé dans le cadre du projet BATLab112, a pour fonction d’assurer la distribution de l’énergie électrique à l’ensemble des équipements du dispositif. Les quatre systèmes fonctionnels — la plateforme rotative, le pont élévateur, le pont roulant et les bras robotiques — sont pilotés par des consoles de commande dédiées, lesquelles requièrent également une alimentation électrique. En conséquence, la multiplicité des équipements, conjuguée à l’hétérogénéité des niveaux de tension requis, impose la mise en œuvre d’une infrastructure de distribution électrique spécifiquement adaptée.

Pour plus d’informations, voir les articles relatifs à la conception des équipements de la Batcave à l’échelle 1/12 :

Présentation générale

L’ensemble des dispositifs de distribution et de contrôle de l’énergie électrique est centralisé au sein d’un local technique dédié. Ce local assure la fonction de point de raccordement du diorama de la Batcave au réseau électrique, tout en intégrant l’ensemble des équipements nécessaires à la distribution de l’énergie et à son suivi opérationnel. Il abrite notamment le poste de transformation HT/BT ainsi que trois armoires de distribution correspondant aux niveaux de tension requis par les équipements du diorama, à savoir 5 VDC, 6 VDC et 12 VDC.

Structure interne

Présentation générale

A l’échelle 1:1, le module de raccordement, situé en amont du poste HT/BT, permet de raccorder un réseau de distribution électrique Basse Tension (BT), au réseau électrique Haute Tension (HT).

A l’échelle du diorama, l’armoire de raccordement assure le raccordement du réseau électrique de la Batcave, au réseau électrique domestique 230V 50Hz. L’entrée de cette armoire autorise un raccordement à une prise secteur par l’intermédiaire d’un câble électrique de type 3G 1,5 mm2.

Description détaillée

  • Les deux passe-câbles assurent le maintien mécanique du câble en entrée (depuis la prise secteur) et en sortie (vers le convertisseur).
  • Les deux borniers de raccordement assurent la connexion électriques des deux câbles.
  • L’interrupteur sectionneur permet d’isoler le diorama du réseau électrique.

Fonctionnement général

Une fois le raccordement au secteur réalisé, par l’intermédiaire du bornier de raccordement, le basculement de l’interrupteur sectionneur en position haute, permet d’alimenter en énergie électrique le convertisseur de puissance du diorama.

Le basculement de l’interrupteur sectionneur de l’armoire de raccordement en position basse, permet d’isoler complètement le diorama du secteur.

Cette armoire est l’unique point de raccordement au secteur du diorama, afin de garantir la sécurité des utilisateurs.

Modèles 3D

Modèle 3D du presse étoupe, passe câble, utilisé dans les 3 modules du poste HT/BT.
Modèle 3D du bloc de jonction, 230VAC, utilisé comme bornier de raccordement.
Modèle 3D de support de Led, utilisé comme passe câble du module sectionneur.

Modèle 3D des interrupteurs 230VAC utilisés comme sectionneur général du poste HT/BT.

Le convertisseur de puissance

Présentation générale

A l’échelle 1:1, le transformateur est l’équipement central du poste HT/BT. Il assure la transformation de la Haute Tension alternative du réseau de distribution électrique régional, en Basse Tension alternative 230V 50Hz.

A l’échelle du diorama, le transformateur est remplacé par un module – convertisseur de puissance -, qui assure la conversion de la tension secteur alternative 230V 50Hz en basses tensions continues compatibles avec les composants électroniques et actionneurs du projet ; électronique, moteurs…

Description détaillée

  • Les 3 passe-câbles d’entrée assurent le maintien mécanique des câbles :
    • Câble 230VAC, issu de l’armoire de raccordement
    • Câble 12VDC, vers le tableau basse tension
    • Câble des commandes, issu du tableau basse tension.
  • Les 4 passe-câbles d’entrée assurent le maintien mécanique des câbles :
    • Câble 230VAC, issu de l’armoire de raccordement
    • Câble 12VDC, vers le tableau basse tension
    • Câble des commandes, issu du tableau basse tension.
  • Les 4 passe-câbles d’entrée assurent le maintien mécanique des câbles :
    • Câble 5VDC
    • Câble 6V DC
    • Câble 12V DC
  • Le convertisseur 230VAC/12VDC assure la conversion AC/DC de la tension secteur 230V 50Hz.
  • Les convertisseurs DC/DC assure la conversion de la tension 12VDC issue du convertisseur AC/DC en tensions continues plus basses ; 5VDC, 6VDC … compatibles avec les composants électroniques et actionneurs du diorama.
  • La carte électronique des relais assure les commutations des différentes tensions continues de sorties

Fonctionnement général

Lorsque l’interrupteur sectionneur de l’armoire de raccordement est basculé en position haute, le convertisseur 230VAC/12VDC du convertisseur de puissance, est alors alimenté en énergie électrique. Il fournit une tension de 12V continue en sortie. Cette tension alimente alors le panneau basse tension pour contrôler l’alimentation électrique des convertisseurs DC/DC.

Lorsque le convertisseur 230VAC/12VDC est sous tension, et que le bouton d’arrêt d’urgence du panneau basse tension est relâché, un appui sur un des boutons poussoirs du panneau de commande, déclenche la commande d’un relais. Ce relais commute la tension du convertisseur DC/DC correspondant, en sortie du convertisseur de puissance.

Modèles 3D

Modèle 3D de l’alimentation utilisée comme convertisseur 230VAC/12VDC.
Modèle 3D des convertisseurs de tensions 12VDC/6VDC et 12VDC/5VDC.
Modèle 3D des borniers utilisés sur la carte des relais de.commutation des tensions de sortie.
Modèle 3D des relais utilisés pour commuter les tensions de sorties du convertisseur.

Le tableau basse tension

Présentation générale

A l’échelle 1:1, le tableau BT permet de répartir l’énergie électrique sur les différents départs issus du poste de transformation. A l’échelle du diorama, cette armoire centralise les commandes des tensions continues en sortie du convertisseur.

Description détaillée

  • Les deux passe-câbles assurent le maintien mécanique du câble en entrée (depuis la sortie du convertisseur 230VAC/12VDC) et en sortie (vers la carte électronique des relais).
  • Le bornier de raccordement assure la connexion électriques des câbles.
  • La carte électronique – PCB des commandes -, centralise tous les circuits de commande des tensions de sortie du convertisseur de puissance.
  • La carte électronique – PCB des relais -, assure la commutation des différentes tensions de sortie du convertisseur de puissance, sous le contrôle des commandes.
  • Les cartes électroniques sont réalisées en logique câblée, à partir de relais électromagnétiques, de boutons poussoirs et de voyants de visualisation réalisés à partir de LEDs.

Fonctionnement général

Lorsque le convertisseur 230VAC / 12VDC est raccordé au réseau électrique domestique lors du basculement de l’interrupteur sectionneur de l’armoire de raccordement en position haute, il délivre en sortie une tension de 12V DC. Cette tension est alors utilisée pour alimenter en énergie électrique, une carte électronique de commande et une carte de relais qui contrôlent les tensions de sortie du convertisseur de puissance.

Modéles 3D

Modélisation 3D

FreeCAD

Dans cette phase de conception préliminaire, seul le design général de la structure mécanique de la console de commande est modélisé. L’assemblage des différentes sous-parties n’est pas pris en compte ici. Il s’agit avant tout de valider la faisabilité technique de ce design ainsi que son intégration à l’échelle 1/12. Les détails de l’assemblage des différents sous-ensembles se fera lors de la réalisation du premier prototype.

La modélisation du poste HT/BT équipant la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCad V0.19.

Visuels de la conception préliminaires des 3 modules composants le poste HT/BT.

GrabCAD

Les fichiers des modèles 3D utilisés lors de la conception préliminaire du poste HT/BT équipant la Batcave du projet BATLab112 sont téléchargés à partir de la plateforme GrabCAD.

Voir aussi

Articles – Electricité

Articles – Conception détaillée

Pourquoi une imprimante Anet A8 ?

Diorama Batcave Batmobile Freecad Conception 3D

Une proposition qui tombe à point !

Depuis décembre 2021, j’utilise une imprimante 3D Anet A8 dans le cadre du projet BATLab112, pour réaliser certaines pièces mécaniques du diorama de la Batcave. 

Je dois préciser que, initialement, je ne souhaitais pas avoir recours à l’impression 3D. Mon ambition était alors de tout construire à l’échelle 1/12 avec les mêmes modes opératoires que pour l’échelle 1, dans une recherche de réalisme. Cependant, j’ai commencé à rencontrer des difficultés de fabrication, notamment  pour la réalisation des armoires électriques petits formats. Pour assurer la robustesse de ces armoires lors de leur manipulation, une structure interne est nécessaire. La conception de cette structure doit prendre en compte le faible volume intérieur des armoires devant accueillir une barrette de 4 blocs de jonctions électriques et laisser suffisamment d’espace libre pour faciliter le câblage. 

C’est dans ce contexte qu’une opportunité s’est présentée : Paul, un membre de la communauté du projet me propose une imprimante 3D, de type ANET A8, en prêt. À présent j’utilise principalement cette imprimante pour fabriquer des pièces de structures internes ou d’assemblage.

Un gain de temps ?

Passer la phase d’apprentissage, l’utilisation d’une imprimante 3D laisse entrevoir des gains de temps importants dans la phase de fabrication de pièces techniques complexes. 

Il est indéniable que je n’aurais jamais réussi à fabriquer des pièces obtenues par impression par d’autres moyens. Certaines de ces pièces ont des formes complexes et nécessite une réalisation précise. Il est important de rappeler ici que je développe le projet BATLab112 sur fond propre. Par conséquent je ne dispose pas d’une gamme d’outils très élaborés. Si nous écartons les options de sous-traitance pour la fabrication de ces pièces, pour des raisons financières, j’ai effectivement économiser le temps de recherche de méthodes de fabrication alternatives ainsi que leurs apprentissages. Mais pour autant, je me rends compte avec le recul, que le temps nécessaire pour maîtriser cette imprimante 3D est loin d’être négligeable dans le temps passé sur le projet BATLab112 depuis son acquisition. 

Articles en lien

La vue en rotation de FreeCAD, simple gadget ?

Le logiciel FreeCAD propose une option de vue en rotation, qui peut s’appliquer sur tout ou partie des objets 3D présents dans le fichier de conception en cours. Passer l’effet captivant d’une telle animation, je me suis posé la question de l’intérêt d’une telle fonction. Mon retour d’expérience sur l’utilisation du logiciel FreeCAD depuis 2018, pour concevoir le diorama de la Batcave du projet BATLab112, me permet d’apporter plusieurs réponses à cette question.

Pour plus d’infos : https://wiki.freecad.org/Std_DemoMode/fr

Une aide à la visualisation en 3D

Une première réponse se trouve dans l’ADN même d’un logiciel tel que FreeCAD. En effet, une attente légitime lorsque l’on utilise un logiciel de conception 3D volumétrique, n’est-elle pas de pouvoir visualiser les objets en 3D ? Par conséquent, la vue en rotation est un excellent outil pour cela. Surtout que cette vue dynamique participe à une meilleure visualisation dans l’espace, pour se créer une image mentale des objets conçus plus précise.

Un aperçu dynamique plus complet

Si cette réponse pourrait suffire à justifier cette option de présentation sous FreeCAD, il n’en reste pas moins que son utilité va au-delà de cette évidence. Compte tenu des performance de FreeCAD, il est possible de concevoir des systèmes complexes inertes ou animés, dont la position ou le mouvement de chaque sous-ensemble est contraint par d’autres. Utiliser les angles de vue pré-réglés, tels que les vue de faces ou les vue de trois-quarts, permettent bien d’obtenir des points de vue différents du comportement des sous-ensembles entre eux. Pour autant, cette succession de points de vue ne permet pas toujours d’appréhender dans leurs globalités toutes les interactions en présence. La vue en rotation est alors un outil très interessant pour avoir un aperçu dynamique complet.

Un outil de communication

Il reste encore un avantage important à l’utilisation de cette option de vue en rotation. Savoir concevoir des systèmes 3D complexes est une chose, mais savoir communiquer sur les détails de leur conception, échanger des points de vue pour optimiser les designs ou trouver des solutions techniques, en est une autre. La vue en rotation trouve donc toute son utilité dans ce besoin de communication quelqu’en soit les raisons. Si « un bon croquis vaut mieux qu’un long discours » alors une vue en rotation vaut mieux qu’un croquis en 2D pour appréhender une conception en 3D !

Utilisation dans le projet BATLab112

FreeCAD est utilisé pour concevoir le diorama de la Batcave du projet BATLab112. Ce diorama présente des modèles réduits d’équipements industriels, à l’échelle 1/12. Ces équipement sont tous mobiles et leurs interactions en mouvement sont millimétrées, compte-tenu de l’espace restreint dans lesquels ils sont mis en oeuvre. Par conséquent, obtenir une image mentale la plus précise possible de ce puzzle en 3D est primordial.

Tout à commencé avec FreeCAD

Diorama Batcave Batmobile Freecad Conception 3D

Depuis le début

L’introduction de cette nouvelle séries d’articles dédiée à l’utilisation de FreeCAD dans le projet BATLab112 est l’occasion de revenir sur les débuts du projet.

Dès les premiers instants du projet BATLab112, la nécessité d’utiliser un logiciel de conception 3D s’est avéré indispensable. Je n’avais pas une idée précise de l’apparence final du diorama. J’en avais défini les grandes lignes ; réalisme dans la représentation et fonctionnement opérationnel des équipements industriels, approche pédagogique évolutive dans l’appréhension de ces équipements. Même si la définition générale du projet n’était pas encore aboutie j’avais besoin de rendre plus concrètes certaines idées.

Un double intérêt

L’autre objectif, consistait à remettre à jour mes compétences dans l’utilisation d’un logiciel de CAO 3D. Ma dernière expérience professionnelle dans le domaine remontait à quelques années déjà avec la version Lite du logiciel AutoCAD édité par AUTODESK.

Des avantages mesurables

Pour être honnête je dois quand même avouer que ma volonté d’utiliser un logiciel de CAO 3D à d’abord été dictée par mon objectif de compétence professionnelle. En effet, dans la phase d’incubation du projet, j’ai visionné beaucoup de vidéos de tutoriels ou de démonstration de fabrication à la main de systèmes électromécaniques. Les principes de montage reposent pour beaucoup sur le collage à chaud de pièces de cartons, de bois ou de métal. Ces vidéos me fascinent toujours par la sensation de facilité et de rapidité d’exécution qu’elles dégagent. Elles m’ont amenés à me tester sur leurs pratiques. Pour cela nul besoin de logiciel de conception ! Mais j’ai très vite compris les limites de telles pratiques. Le manque d’anticipation dans la conception entraîne immanquablement des erreurs qui oblige souvent à recommencer, entraînant une perte de temps et un gâchis de matière. De plus, modifier ou démonter ces réalisations étant impossibles ou du moins très fastidieux, cela amplifie encore la tendance au gaspillage. C’est à ce moment que j’ai compris quelles sont les réels avantages d’un logiciel comme FreeCAD pour le projet : une conception réfléchie, anticipant des erreurs de perception et évitant ainsi des impasses et économisant du temps, tout en élaborant des systèmes complexes sans consommer de matières.

En lien