Pont élévateur – Electronique – Conception Ep2

Suite à la réalisation du premier prototype opérationnel, cet article présente la reprise de la conception de l’électronique de commande du pont élévateur, du diorama de la Batcave du projet BATLab112.


Introduction

Cet article fait suite à la conception détaillée de l’électronique de commande et la réalisation d’un premier prototype opérationnel de l’électronique de commande du pont élévateur du diorama pédagogique à l’échelle 1/12 de la Batcave du projet BATLab112.

Modification de la conception initiale

Les essais effectués à l’aide du montage prototype ont mis en évidence que les modules de conversion des signaux de fréquence, issus des capteurs optiques des plateformes moteurs, en signaux de tension exploitables par la carte Arduino Mega intégrée à la console de commande du pont élévateur, ne sont pas adaptés. En effet, la conversion de signaux de fréquence trop faibles génère des tensions dont les variations en amplitude, corrélées à la fréquence, sont insuffisantes pour permettre une interprétation fiable et précise par le microcontrôleur.

L’objet de cet article est double. Il s’agit, dans un premier temps, de proposer une nouvelle conception de l’électronique de commande, en remplaçant les modules de conversion fréquence/tension par des cartes Arduino, capables d’assurer directement la lecture, le traitement et la transmission des signaux issus des capteurs optiques.
Dans un second temps, l’objectif est d’introduire plusieurs améliorations fonctionnelles absentes de la première version du système, notamment la mise en place d’une régulation de vitesse pour chacun des quatre moteurs assurant l’entraînement des axes du pont élévateur. Cette évolution vise à garantir un mouvement synchronisé et sécurisé de l’ensemble des plateformes, tout en offrant une meilleure stabilité et une précision accrue lors des phases de montée et de descente.

Les éléments conservés depuis la version initiale

Dans une volonté de minimiser l’impact des modifications envisagées, tant en termes de temps que de coût, certains éléments existants doivent être conservés. Cette approche vise à réutiliser au maximum les composants et sous-ensembles déjà en place, afin de limiter les interventions matérielles et de garantir la compatibilité avec l’infrastructure électrique actuelle du projet.

Les armoires électriques

L’implantation de cette électronique au sein des deux armoires électriques est conservée. Les dimensions mécaniques de ces armoires demeurent inchangées, afin de maintenir la cohérence avec les autres ensembles électriques similaires du projet.

La conception de l’agencement de l’armoire dédiée au contrôle de la vitesse et du sens de rotation des moteurs n’est que marginalement affectée par le changement de procédé de mesure de la vitesse. Cependant, l’analyse du fonctionnement du prototype a mis en évidence la nécessité d’une évolution majeure : le système doit désormais permettre de piloter la vitesse de rotation de chacun des moteurs de manière indépendante. Cette modification ouvre la voie à une régulation plus fine du mouvement de chaque axe du pont élévateur, garantissant un meilleur équilibrage et une synchronisation plus précise de l’ensemble.

Dans le montage initial, le signal issu du générateur à rapport cyclique variable, conçu à partir d’un oscillateur NE555, produit un signal carré unique distribué simultanément vers les quatre entrées des deux doubles ponts en H assurant le pilotage des moteurs.
Cependant, ce dispositif, entièrement autonome et dépourvu de rétroaction, ne permet aucune régulation dynamique du rapport cyclique en fonction des variations de vitesse propres à chacun des moteurs. En conséquence, toute fluctuation mécanique ou électrique affectant un moteur se répercute sur l’équilibre global du système, sans possibilité de correction différenciée.

Schéma électronique

La reprise de cette conception électronique a également constitué l’occasion d’utiliser, pour la première fois dans l’avancement du projet BATLab112, l’outil en ligne TinkerCAD, dédié à la conception et à la simulation de circuits électroniques. Cet environnement virtuel a permis de modéliser les nouveaux schémas de commande avant leur réalisation concrète, facilitant ainsi les phases de test, de validation et d’ajustement.
L’usage de TinkerCAD a également contribué à limiter les erreurs de conception, qui se sont déjà avérées coûteuses en temps et en ressources matérielles, en permettant d’anticiper les incompatibilités potentielles entre composants et de valider les principes de fonctionnement avant toute phase de prototypage physique.

Pour accéder à TinkerCAD cliquer sur l’image ou sur ce lien : https://www.tinkercad.com/things/4NAy7qcVIJG

Présentation générale

Au centre de ce schéma, les deux cartes Arduino Uno jouent un rôle de représentation :

  • celle située à gauche symbolise la carte Arduino Mega 2650 utilisée dans la console de commande ;
  • celle située à droite correspond à la nouvelle carte Arduino intégrée au montage, dédiée à l’acquisition et au traitement des signaux électriques provenant des capteurs optiques de mesure des vitesses de rotation des moteurs.

Dans cette simulation, l’écran TFT 2,8″ associé à la carte Mega a dû être remplacé par un écran LCD I2C 16×2, en raison des limitations de la bibliothèque de composants disponibles dans TinkerCAD. Toutefois, ce remplacement s’est révélé être une opportunité technique : il a permis d’envisager une solution d’affichage local, directement au plus près des armoires de raccordement électriques.
Les faibles dimensions et la simplicité de câblage de ces écrans LCD offrent de nouvelles perspectives d’intégration, notamment sur la porte même des armoires électriques.

La platine de prototypage électronique présente sur le schéma remplit quant à elle un rôle symbolique, représentant la console de commande physique du dispositif.

Enfin, les quatre générateurs de fonctions simulent les signaux issus des capteurs optiques placés sur les plateformes moteurs. Ces générateurs, réglables individuellement, sont associés à quatre oscillogrammes permettant d’observer les rapports cycliques et les signaux de commande de vitesse de rotation produits par la carte Arduino.
Cette configuration a notamment permis de valider expérimentalement la régulation de vitesse des moteurs dans un environnement virtuel.

Évolution depuis la version initiale

Mesure de la vitesse de rotation des moteurs

La mesure de la vitesse de rotation des moteurs est la fonction la plus impactée par les évolutions de cette nouvelle conception. Jusqu’à présent, cette mesure était assurée par des modules de conversion fréquence/tension, qui se sont révélés inadaptés aux conditions réelles de fonctionnement et aux niveaux de signaux fournis par les capteurs.

Comme évoqué précédemment, l’objectif consiste à remplacer ces modules par une ou plusieurs cartes Arduino, chargées d’assurer l’acquisition, le traitement et la conversion des signaux de fréquence issus des capteurs optiques positionnés sur les quatre plateformes moteurs.


L’utilisation de l’outil de simulation TinkerCAD joue ici un rôle essentiel : elle permet d’expérimenter différentes configurations pour déterminer le nombre de cartes Arduino nécessaires à la gestion simultanée des signaux, ainsi que le modèle le plus approprié. Ce choix dépendra à la fois des capacités d’entrée/sortie disponibles et des contraintes d’encombrement mécanique, afin de garantir une intégration optimale en remplacement direct des anciens modules de conversion.

Edition des schémas électroniques

La simulation du montage électronique du diorama de la Batcave du projet BATLab112 est éditée avec l’application Web TinkerCAD.

Script Arduino

Script d’acquisition et traitement des signaux de vitesse moteur

/**************************************************************/
/* Script for Arduino Check Measure */
/* Measures and converts the frequency values from the */
/* generators to transmit them to the second Arduino */
/**************************************************************/
#include <LiquidCrystal_I2C.h>

#define COUNTER 1 // Nb pulses/measure
#define DUTY_CYCLE_INIT 70 // Initialization Duty Cycle

LiquidCrystal_I2C lcd_1(38, 16, 2);

/* GLOBAL VARIABLES *******************************************/
int PulseCounter = 1;
int Freq_min;
int Motor_min;

float Period[]={0,0,0,0};
float old_Period[]={0,0,0,0};

float Freq[]={0,0,0,0};
int Freq_int[]={0,0,0,0};
char Freq_char[4][4]={"000","000","000","000"};

int Duty_cycle[4]={DUTY_CYCLE_INIT,DUTY_CYCLE_INIT,DUTY_CYCLE_INIT,DUTY_CYCLE_INIT};
float Duty_cycle_control[4]={1,1,1,1};

const byte pinIn[] = {4, 7, 12, 13}; // Pins used to get Freq
const byte pinPWM[] = {3, 9, 10, 11}; // Pins PWM

/**************************************************************/
/* Void setup() */
/**************************************************************/
void setup()
{
/* ARDUINO PINOUT *******************************************/
//MANUAL COMMAND PIN
int PIN_FREQ0 = 4;
int PIN_FREQ1 = 7;
int PIN_FREQ2 = 12;
int PIN_FREQ3 = 13;

pinMode(PIN_FREQ0, INPUT);
pinMode(PIN_FREQ1, INPUT);
pinMode(PIN_FREQ2, INPUT);
pinMode(PIN_FREQ3, INPUT);

//PWM PINS
int PIN_PWM0 = 3;
int PIN_PWM1 = 9;
int PIN_PWM2 =10;
int PIN_PWM3 =11;

pinMode(PIN_PWM0, OUTPUT);
pinMode(PIN_PWM1, OUTPUT);
pinMode(PIN_PWM2, OUTPUT);
pinMode(PIN_PWM3, OUTPUT);


/* SET PWM FREQUENCY DIVISOR ********************************/
// PWM PIN 9 & 10 → 31372.55 Hz
//TCCR1B &= 0b11111000;
//TCCR1B |= 0b00000001;
// PWM PIN 3 & 11 → 31372.55 Hz
//TCCR2B &= 0b11111000;
//TCCR2B |= 0b00000001;

/* POWER PWM SIGNALS ****************************************/
analogWrite(PIN_PWM0, map(DUTY_CYCLE_INIT,0,100,0,255));
analogWrite(PIN_PWM1, map(DUTY_CYCLE_INIT,0,100,0,255));
analogWrite(PIN_PWM2, map(DUTY_CYCLE_INIT,0,100,0,255));
analogWrite(PIN_PWM3, map(DUTY_CYCLE_INIT,0,100,0,255));

/* INIT SERIAL1 PORT ****************************************/
Serial.begin(9600);

/* LCD FIRST DISPLAY ****************************************/
lcd_1.init();
lcd_1.backlight();
lcd_1.setCursor(0,0);
lcd_1.print("MEASURE");
lcd_1.setCursor(0,1);
lcd_1.print("WIP...");

delay(3000);
}

/**************************************************************/
/* Void loop() */
/**************************************************************/
void loop() {

/* CHECK FREQUENCIES ****************************************/
for(int i=0; i<4; i++)
{
Period[i] = ReadPeriod(pinIn[i]); // Period in µsec
Freq[i] = (1000000/Period[i]); // Frequency in Hz
}

/* DUTY_CYCLE CONTROL VALUE *********************************/
Freq_min = min(min(min(Freq[0],Freq[1]),Freq[2]),Freq[3]);
for(int i=0; i<4; i++)
{
if(Freq_min == Freq[i])
{
Motor_min = i;
}
}
for(int i=0; i<4; i++)
{
Duty_cycle_control[i] = Freq_min/Freq[i];
Duty_cycle[i] = Duty_cycle[i] * Duty_cycle_control[i];
analogWrite(pinPWM[i], map(Duty_cycle[i],0,100,0,255));
}

/* FORMAT FREQ VALUE ON 3 DIGITS ****************************/
// Freq value range : 10 Hz -> 500 Hz
for (int i=0;i<4;i++)
{
/*if (Freq[i]==0)
{
for(int c=0;c<3;c++)
{
Freq_char[i][c]="0";
}
}*/
if (Freq[i]<10)
{
Freq[i] = Freq[i] + 910;
}
if (Freq[i]<100)
{
Freq[i] = Freq[i] + 900;
}

/* CONVERTING (FLOAT) FREQ VALUE in CHAR ******************/
if(Freq[i]!=0)
{
Freq_int[i] = round(Freq[i]);
itoa(Freq_int[i],Freq_char[i],10);
}
}

/* SEND FREQ_CHAR VIA RxTx PORT *****************************/
for(int i=0; i<4; i++)
{
Serial.write(Freq_char[i],3);
}

/* DISPLAY VALUES *******************************************/
// FIRST : FREQUENCIES
lcd_1.init();
lcd_1.setCursor(0,0);
lcd_1.print("F0:");
lcd_1.print(Freq_char[0]);
lcd_1.setCursor(0,1);
lcd_1.print("F1:");
lcd_1.print(Freq_char[1]);
lcd_1.setCursor(9,0);
lcd_1.print("F2:");
lcd_1.print(Freq_char[2]);
lcd_1.setCursor(9,1);
lcd_1.print("F3:");
lcd_1.print(Freq_char[3]);

delay(3000);

// SECOND : DUTY CYCLE
lcd_1.init();
lcd_1.setCursor(0,0);
lcd_1.print("D0:");
lcd_1.print(Duty_cycle[0]);
lcd_1.setCursor(0,1);
lcd_1.print("D1:");
lcd_1.print(Duty_cycle[1]);
lcd_1.setCursor(9,0);
lcd_1.print("D2:");
lcd_1.print(Duty_cycle[2]);
lcd_1.setCursor(9,1);
lcd_1.print("D3:");
lcd_1.print(Duty_cycle[3]);

PulseCounter = 0;
delay(2000);
}

/**************************************************************/
/* Function : ReadPeriod() */
/* Input : The signal number of the measured period */
/* Return : none */
/* Digest : Use the Arduino pulseIn command to measure */
/* the signal period in microseconds */
/**************************************************************/
float ReadPeriod(int signal)
{
int pin = 0;
float VarPeriod = 0;
PulseCounter = 0;
while(PulseCounter <= COUNTER)
{
VarPeriod = (VarPeriod + pulseIn(signal,HIGH));
VarPeriod = (VarPeriod + pulseIn(signal,LOW));
PulseCounter++;
}
VarPeriod = VarPeriod / PulseCounter;
return VarPeriod;
}

Limite de fonctionnement du script

Régulation de la vitesse de rotation des moteurs

Le modèle de la bibliothèque TinkerCAD de moteur à courant continu équipé d’un encodeur ne permet, à priori, pas de simuler le fonctionnement réel de l’encodeur. Cette limitation a directement conduit à adopter une approche simplifiée pour la régulation de la vitesse des moteurs. En l’absence de signaux de retour exploitables, la régulation du rapport cyclique du signal PWM de pilotage reste très rudimentaire dans cette première version du script.

À partir d’une configuration initiale des rapports cycliques fixée à 70 % :

#define DUTY_CYCLE_INIT 70

La plus petite valeur parmi les quatre vitesses de rotation simulées est utilisée comme référence pour ajuster les rapports cycliques des trois autres moteurs. Cette méthode, bien que cohérente dans le cadre des contraintes de la simulation, ne constitue pas une véritable régulation en boucle fermée : elle repose uniquement sur une logique de comparaison relative, sans mesure réelle de la vitesse issue d’un encodeur.

De plus, les délais d’exécution du code et les latences propres à l’environnement de simulation TinkerCAD limitent la précision des ajustements et induisent un comportement parfois irrégulier. Ces approximations rendent difficile toute extrapolation directe du fonctionnement simulé vers un système physique réel.

Ainsi, le script doit être considéré avant tout comme une première approche conceptuelle de la régulation multi-moteurs. Il permet de valider les principes d’organisation du code — gestion des signaux PWM, comparaison des vitesses, et synchronisation relative — tout en offrant une base solide pour une future version du programme. 

Fréquences des signaux PWM

/* SET PWM FREQUENCY DIVISOR ********************************/
// PWM PIN 9 & 10 → 31372.55 Hz
// TCCR1B &= 0b11111000;
// TCCR1B |= 0b00000001;
// PWM PIN 3 & 11 → 31372.55 Hz
// TCCR2B &= 0b11111000;
// TCCR2B |= 0b00000001;

Ces lignes de script déclarées en commentaire correspondent à la mise en œuvre initiale de diviseurs de fréquence appliqués aux signaux PWM générés par les broches 3, 9, 10 et 11. L’objectif de cette modification était d’augmenter la fréquence de modulation, passant d’environ 490 Hz à des valeurs supérieures à 20 kHz, afin de rendre les signaux inaudibles pour l’oreille humaine. Cette approche avait été envisagée pour améliorer le confort sonore du système lors des phases de commande moteur. Cependant, elle a été finalement mise de côté, car l’augmentation de la fréquence PWM provoquait des dysfonctionnements dans la communication I2C utilisée par l’écran LCD, rendant son affichage inopérant.
Une solution alternative, consistant à utiliser des bibliothèques spécialisées telles que PWM.h, sera étudiée ultérieurement afin d’obtenir un contrôle plus fin des fréquences de modulation sans interférer avec les autres périphériques du système.

Bienfaits des limites de TinkerCAD

Les limites rencontrées lors de l’utilisation de TinkerCAD apparaissent clairement dès la conception du schéma électronique, notamment en raison de l’absence de certains composants essentiels utilisés dans le cadre du projet BATLab112, tels que la carte Arduino Mega 2560 ou encore les écrans TFT 2,8″.

Cependant, loin de constituer un frein, ces contraintes se sont révélées particulièrement formatrices. Elles ont favorisé une approche plus inventive et une optimisation du travail de conception. En effet, cette première expérience d’utilisation de TinkerCAD a permis de démontrer qu’une seule carte Arduino Uno pouvait remplacer les quatre modules de conversion fréquence/tension initiaux, tout en assurant l’acquisition et le traitement des signaux issus des capteurs.

L’absence de certains composants dans l’environnement de simulation a également encouragé la recherche de solutions alternatives et l’amélioration des montages existants. Ainsi, la nécessité d’optimiser l’utilisation des broches disponibles sur l’Arduino Uno, en nombre plus limité que sur la Mega 2560, a conduit au développement de nouvelles stratégies de communication.
Parmi celles-ci, la mise en place d’un échange de données par liaison série entre l’Arduino dédié à l’acquisition et au traitement des signaux de vitesse de rotation des moteurs, et l’Arduino de la console de commande responsable de l’affichage, constitue une évolution majeure. Cette approche a permis non seulement d’alléger le câblage, mais aussi d’améliorer la modularité et la clarté fonctionnelle du système.

Prototypage de validation

Maquette de prototypage

Cette maquette de prototypage est destinée à valider le câblage ainsi que le fonctionnement de la carte Arduino dédiée à l’acquisition, au traitement et à la transmission des signaux de vitesse des quatre moteurs. Elle constitue une étape préalable essentielle avant l’intégration du système complet sur le prototype fonctionnel.

Adaptations par rapport au montage TinkerCAD

Dans cette version matérielle, les générateurs de fréquences utilisés dans le montage TinkerCAD sont remplacés par un clone d’Arduino Mega, chargé de délivrer quatre signaux PWM. Deux de ces signaux sont associés à un diviseur de fréquence, permettant d’alterner entre deux valeurs de fréquences distinctes afin de simuler différentes vitesses de rotation des moteurs.

La carte Arduino Uno couplée à un écran LCD, représentant la console de commande dans la simulation TinkerCAD, est remplacée par la carte Arduino Mega équipée d’un écran TFT 2,8″. Cet ensemble est directement issu de la console de commande réelle du système.

De son côté, l’écran LCD initialement utilisé sur la carte Arduino Uno en charge de la mesure, du traitement et de la transmission des informations, est désormais remplacé par un écran OLED I2C, plus compact et offrant une intégration dans l’armoire électrique.

Conclusion

Le fonctionnement général de cette maquette est validé. Les échanges entre les cartes, ainsi que la génération et la lecture des signaux de vitesse, se comportent conformément aux attentes.
La prochaine étape consistera à intégrer ce montage dans les armoires électriques du prototype initial du système de commande, en liaison avec les plateformes moteurs, afin de procéder aux essais en conditions réelles.

Voir aussi

Articles – Pont élévateur

Articles – Conception détaillée

Pont élévateur – Electronique – Conception Ep1

Cet article présente la première partie de la conception et du prototypage de l’électronique de commande du pont élévateur, du diorama de la Batcave à l’échelle 1/12, du projet BATLab112.


Introduction

Cet article fait suite à la conception détaillée mécanique et la réalisation des quatre prototypes de la plateforme de motorisation des axes du pont élévateur. Cet article présente la conception détaillée de l’électronique de commande qui va contrôler les mouvements du pont élévateur en pilotant les moteurs des plateformes.

Cahier des charges

Atelier de la Batcave – Cahier des charges – Freecad 3D

Le cahier des charges de l’électronique de commande est conforme au cahier des charges général du projet BATLab112 présenté dans l’article ci-dessus. La vidéo associée est la mise à jour de l’illustration de ce cahier des charges initial, intégrant l’avancement de la conception 3D des différents composants du diorama.

L’électronique doit permettre de commander le pont élévateur par la mise en oeuvre des fonctions suivantes :

  • Commander le sens de déplacement à la verticale du pont élévateur en fonction des actions sur les commandes manuelles.
  • Maintenir une vitesse constante lors du déplacement à la verticale du pont élévateur pour maintenir l’horizontalité du pont élévateur lors de son déplacement à la verticale.
  • Détecter les positions haute et basse du pont élévateur pour interdire le déplacement au-delà de ces positions.
  • Détecter un défaut de rotation d’un des moteurs pour anticiper un éventuel défaut d’horizontalité.
  • Transmettre des informations sur l’état du système : Position des commandes manuelles, vitesse de rotation des moteurs, défauts …

L’ensemble des fonctions décrites dans le cahier des charges doit être entièrement compatibles avec un raccordement du pont élévateur sur un modèle de console de commande déjà mise en oeuvre dans le diorama pour piloter la plateforme rotative et le pont roulant.

Principe de fonctionnement général

Le mouvement vertical du pont élévateur est assuré par les 4 plateformes de motorisation des 4 axes verticaux.  Le principe est très simple la rotation des moteurs entraine la rotation des 4 axes. Ces axes sont des vis sans fin, sur lesquelles est fixé le pont élévateur. La rotation de ces vis sans fin entraine le déplacement verticale du pont.

La console de commande regroupe l’ensemble des commandes manuelles et automatiques pour contrôler la vitesse et le sens de rotation des moteurs, mais aussi les écrans d’affichage de ces informations. La conception de la console de commande a déjà donné lieu à la réalisation de deux modèles opérationnels mis en œuvre pour commander la plate-forme rotative et le pont roulant bipoutre. 

Deux armoires électriques regroupent l’ensemble des composants, des circuits électriques et électroniques nécessaires pour transmettre et convertir les signaux électriques. 

Les signaux de commandes issues de la console de commandes sont transmises à une armoire électrique dans laquelle se trouvent deux PCB de type : Double Pont en H à base de L298N. Ces  PCB convertissent les signaux de commandes du sens de déplacement vertical du pont élévateur, portés par des tensions de 5VDC, en signaux de tension 12VDC, compatibles avec l’alimentation électrique des moteurs.

ScreenShot FreeCAD Conception 3D

Les plateformes de motorisation des axes du pont élévateur sont connectées, d’une part à l’armoire de contrôle des moteurs, et d’autre part, à une deuxième armoire électrique dans laquelle se trouvent 4 PCB de type convertisseur de fréquence en tension. Ces PCB transforment les signaux électriques en fréquence, issus des photocoupleurs des capteurs de vitesse de rotation présents sur chacune des plateformes, en signaux électriques en tension, compatibles avec les broches d’entrées de l’Arduino en charge de l’affichage de ces informations sur les écrans de la console de commande. 

Schéma électronique

Screenshot KiCAD Contrôle des moteurs
Screenshot KiCAD Mesure de la vitesse de rotation

Le schéma du montage électronique se partage en deux parties. La première partie correspond au circuit de contrôle de la vitesse et du sens de rotation des moteurs. La deuxième partie correspond au circuit de conversion des signaux électriques issus des capteurs photocoupleurs de mesure de la vitesse de rotation des moteurs.

Contrôle de la vitesse et du sens de rotation des moteurs

Au centre de ce schéma on retrouve les deux doubles pont en H à base de composants L298N. Chaque pont en H pilote 2 moteurs directement raccordés sur chacune de ses sorties.

Le signal carré à rapport cyclique variable est dirigé vers les entrées EnA et EnB des deux double pont en H pour garantir une vitesse de rotation des moteurs identiques.

+ d’infos : https://arduino.blaisepascal.fr/pont-en-h-l298n/

Comme mentionné au dessus, la variation de la vitesse de rotation des moteurs est commandée par un générateur de signal carré, à rapport cyclique variable. Ce montage est réalisé à partir d’un oscillateur NE555.

Dans ce montage la résistance R301 et le condensateur C301 fixe la valeur de la fréquence. Le potentiomètre P300 permet le réglage du rapport cyclique.

Les commandes manuelles ont été schématisées le plus simplement possibles ; Deux switches dont la combinaison de leurs positions donne la commande du sens de rotation.

S2S1Moteur
00Stop
01Sens 1
10Sens 2
11Stop

Le détails de ces commandes sera développé lors de la conception de la Console de commandes associée au pont élévateur.

Mesure de la vitesse de rotation des moteurs

Au centre de ce schéma, on retrouve quatre convertisseurs de fréquence en tension (Hz to V), MIKROE 2890. Ces convertisseurs transforment les signaux électriques en fréquence, issus des photocoupleurs des capteurs de vitesse de rotation, en signaux électriques en tension, compatibles avec les broches d’entrées de l’Arduino.

Le convertisseur Hz to V ayant besoin d’une tension d’alimentation électrique de 3,3V, un convertisseur Tension / Tension, LM33V assure la conversion de la tension d’alimentation électrique de 5VDC en 3,3VDC.

Edition des schémas électroniques

LEs schéma électriques et électroniques du diorama de la Batcave du projet BATLab112 sont édités avec la suite logicielle Open Source KiCad .

Sourcing

Le sourcing des composants principaux est réalisé dès la phase de conception pour intégrer la modélisation 3D de ces composants dans la conception détaillée des armoires électriques.

Le sourcing est réalisé à partir d’une plateforme de ventes en ligne. Ce choix est essentiellement dicté par un objectif de limitation du nombre de fournisseurs, mais aussi de centralisation des commandes et ainsi envisager des économies d’échelle, notamment sur les frais de livraison.

Sourcing câblage

1. Jack 3,5 mm
2. Jack 5,5 mm
3. Bornier vert
4. Bornier bleu
5. Presse étoupe
  1. Les prises Jack 3,5 mm sont utilisées en entrées/sorties pour connecter des câbles de très petites sections véhiculant des signaux de commandes de très faibles intensités.
  2. Les prises Jack 5,5 mm sont utilisées en sorties pour connecter des câbles de sections plus importantes pour alimenter des éléments tels que les moteurs à courant continu.
  3. Les borniers verts sont utilisés en entrées/sorties pour connecter des câbles de très petites sections véhiculant des signaux de commande en interne d’une armoire électrique.
  4. Les borniers bleus sont utilisés en entrées/sorties pour connecter des câbles de sections plus importantes véhiculant des tensions d’alimentation d’éléments tels que des moteurs.
  5. Les presse étoupes sont utilisé en entrées d’une armoire électrique pour connecter le câble d’alimentation général de l’armoire.

Sourcing des composants actifs

Le contrôle du sens et de la vitesse de rotation des moteurs à courant continu est assuré par une carte électronique de type Double pont en H équipée d’un composant L298N.

Une carte est capable de piloter deux moteurs simultanément, par conséquent, deux cartes de ce type sont nécessaires pour piloter les moteurs des quatre plateformes de motorisation des quatre axes du pont élévateur.

La mesure de la vitesse de rotation des moteurs est assuré par une carte électronique convertisseur fréquence / Tension. Ce PCB convertit les signaux en fréquence issus des capteurs des plateformes en signaux en tension compatible avec les micro-controlleurs Arduino des consoles de commandes.

Une carte est capable de convertir un signal en fréquence, par conséquent, quatre cartes de ce type sont nécessaires pour mesures les vitesse de rotation des moteurs des quatre plateformes des quatre axes du pont élévateur.

Modélisation 3D

Conception 3D

La modélisation du poste électrique équipant la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCad V0.21.2

Bibliothèque de modèles 3D

Les fichiers des modèles 3D utilisés lors de la conception préliminaire du poste HT/BT équipant la Batcave du projet BATLab112 sont téléchargés à partir de la plateforme GrabCAD.

Intégration

Screenshot FreeCAD Motors Control
Screenshot FreeCAD Measures Control

Tous les composants d’une même page de schéma sont regroupés dans une armoire électrique à l’échelle 1/12. On obtient ainsi, une première armoire électrique sur laquelle sont raccordés les moteurs électriques, les commandes manuelles et le signal carré de contrôle de la vitesse de rotation des moteurs, issus de la console de commandes. La deuxième armoire électrique est raccorder aux photocoupleurs des capteurs de mesure de la vitesse de rotation des moteurs et à la console de commande pour lui transmettre les signaux électriques correspondants aux vitesses de rotation.

Cet article ne détaille pas la conception de la structure des armoires électriques. Cette conception a déjà fait l’objet d’un article spécifique.

Détail des borniers de raccordement électriques

Screenshot FreeCAD Terminal Block Motors Control
Screenshot FreeCAD Terminal Block Measures Control

Compte tenu des dimensions à l’échelle 1/12 de ces armoires électriques, la conception de l’intégration des composants doit être précise. Le point crucial réside dans le design et l’intégration des borniers de raccordement électriques.

Voir aussi

Articles – Pont élévateur

Articles – Conception détaillée

Pont élévateur – Conception Détaillée – Plateformes moteurs

Cet article présente la deuxième partie de la conception détaillée, du pont élévateur à l’échelle 1/12, du diorama de la Batcave du projet BATLab112. Cette deuxième partie porte plus particulièrement sur les quatre plateformes moteurs et leur raccordement électrique.


Introduction

Cet article est la suite de la conception détaillée de la structure mécanique du pont élévateur. L’objectif est à présent de concevoir le design mécanique des 4 plateformes de motorisation des 4 axes du pont élévateur.

Benchmarking

Pour respecter l’objectif de réalisme du diorama pédagogique du projet BATLab112, le design des plateformes des moteurs du pont élévateur du diorama est directement inspiré de plateformes réelles.

Le type d’équipement représentée sur la photo est une pompe à eau horizontale électrique très largement utilisé dans l’industrie.

source : modopump.com

Présentation générale

Conception mécanique

La motorisation des axes du pont élévateur se compose de 4 plateformes identiques, équipées chacune d’un moteur à courant continu couplé à une boîte de renvoi d’angle à 90°. Sur les 4 axes de couplage, une roue codeuse permet à un capteur optique de mesurer la vitesse de rotation du moteur et ainsi de contrôler la vitesse de déplacement vertical du pont élévateur.

Sourcing

Pour définir le design final de cet ensemble et s’assurer de son intégration mécanique dans le diorama, les composants sont sélectionnés dans la phase de conception détaillée en fonction de leurs dimensions et de leurs caractéristiques techniques.

Moteur
Roue codeuse
Engrenage angulaire

Caractéristiques techniques

  • Alimentation . : 12V CC
  • Puissance …… : 7W
  • Vitesse : 2000 tr/min

Sourcing

Caractéristiques techniques

  • Alimentation : 3,3V à 5V CC
  • Sortie : Numérique
  • Capteur : Infrarouge

Sourcing

Caractéristiques techniques

  • Réduction . : 1:1
  • Engrenage : Conique
  • Matière : Nylon et Acier

Sourcing

Moteur à courant continu

Ce modèle de moteur est sélectionné pour ses dimensions mécaniques compatibles avec le rendu réaliste imposé par l’échelle 1/12 du diorama, mais aussi pour ses caractéristiques électriques garantissant le bon fonctionnement final du système. La tension d’alimentation en 12V, associée à une vitesse de rotation nominale élevée, laissent envisager un couple mécanique satisfaisant après réduction de la vitesse de rotation.

Roue codeuse et capteur optique

Ce capteur est sélectionné pour la simplicité de sa mise en œuvre, son encombrement compatible avec l’échelle du diorama et un signal de sortie numérique. Comme le montre la photo, ce modèle est souvent vendu par petit lot de pièces.

Engrenage angulaire

Le choix de ce type d’engrenage est relativement restreint sur un marché grand public autorisant des commandes à l’unité. Ce modèle d’engrenage angulaire est sélectionné pour son rapport de réduction de 1:1 mais aussi pour son design mécanique robuste, équipé de pattes de fixation.

Conception électrique

La conception électrique porte ici essentiellement sur l’armoire électrique qui doit assurer le raccordement de la tension d’alimentation des moteurs ainsi que le signal de sortie de la roue codeuse. Pour concevoir le design mécanique de cette armoire électrique, ainsi que son intégration générale sur la plateforme, il est nécessaire de penser auparavant sa conception électrique

L’objectif de reproduction réaliste du câblage d’une telle armoire n’est pas envisageable compte tenu des contraintes d’intégration des composants nécessaires. Cependant, les armoires électriques du pont élévateur vont faire l’objet d’une évolution dans leur design, par rapport à la conception des précédentes armoires électriques du diorama du projet BATLab112.

Screenshot

Sectionneur électrique

Le premier objectif est de remplacer le bloc de jonction, présent dans les premières armoires électriques du diorama, pour le raccordement électrique d’alimentation des moteurs, par un système à base de switches et de deux connecteurs, faisant office de sectionneur électrique comme illustré sur l’extrait du schéma ci-contre.

Bornier de raccordement

Le remplacement du bloc de jonction contraint aussi le câblage de la roue codeuse de chaque moteur. Elles seront donc raccordées via un connecteur à trois contacts, faisant office de bornier électrique.

Sourcing

Connecteur 2 broches
Switch à glissière
Connecteur 3 broches

Caractéristiques techniques

  • Tension ….. : 300V CC
  • Intensité … : 10A
  • Broche …… : 2

Sourcing

Caractéristiques techniques

  • Tension ….. : 50V CC
  • Intensité … : 0,5A

Sourcing

Caractéristiques techniques

  • Tension ….. : 300V CC
  • Intensité … : 10A
  • Broche …… : 3

Sourcing

Modélisation 3D

FreeCAD

Le projet BATLab112 utilise la version 0.21.2 de FreeCAD dans le cadre de la conception préliminaire et détaillée du diorama de la Batave à l’échelle 1/12.

La modélisation du poste électrique équipant la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCad V0.21.2

Modélisation des pièces mécaniques

Moteur électrique
Roue codeuse
Engrenage angulaire

Contrairement à d’autres composants utilisés dans les systèmes industriels de la Batcave, aucun modèle 3D n’est disponible librement pour chacun dses composants de la plateforme ; moteur, roue codeuse, engrenage à renvoi d’angle. Par conséquent, leur modélisation 3D est réalisée avec le logiciel FreeCAD pour définir dans un premier temps leur design général. La prise en compte de leurs dimensions externes permet de présenter leurs intégration sur une plateforme.

Modélisation des composants électroniques

Les modèles 3D des composants électroniques sont disponibles dans la bibliothèque de GrabCAD

Les fichiers des modèles 3D utilisés lors de la conception préliminaire du poste HT/BT équipant la Batcave du projet BATLab112 sont téléchargés à partir de la plateforme GrabCAD.

Electronic component
Electrical cabinet frame
Electrical cabinet overview

Conception détaillée de la plateforme

La modélisation complète et détaillée d’une plateforme nécessite l’intégration d’éléments complémentaires, comme le coupleur monté sur l’axe vertical en sortie de l’engrenage à renvoi d’angle, le portique supportant l’armoire électrique et aussi la base d’accueil et de fixation de tous les composants.

Vue d’ensemble

Prochaine étape

La première version de la conception détaillée de tous les composants mécaniques du pont élévateur est achevée. La prochaine étape consiste à concevoir et réaliser le prototype de l’électronique de commande.

Voir aussi

Articles – Pont élévateur

Articles – Conception détaillée

Pont élévateur – Conception détaillée – Ep 1

Cet article présente la première partie de la conception détaillée, du pont élévateur à l’échelle 1/12, du diorama de la Batcave du projet BATLab112. Cette première partie porte plus particulièrement sur le design mécanique de la motorisation des axes du pont élévateur. La deuxième partie portera sur l’électronique de commande pour contrôler les moteurs.


Introduction

Le dimensionnement mécanique du pont élévateur lors de la conception préliminaire ainsi que le premier prototype réalisé, ont permis de valider la cinématique de ce système, et ainsi de développer et produire les prototypes des autres systèmes industriels équipant le diorama de la Batcave du projet BATLab112.

L’objectif de la conception détaillée est à présent de définir plus précisément la motorisation électrique du pont élévateur de la Batcave. En effet, lors de la conception préliminaire la motorisation du pont élévateur a été représentée par 4 moteurs pas à pas fixés directement sur les 4 axes. L’objectif était de pouvoir en définir la structure mécanique, cette partie du système a donc été mise de côté. À présent, il convient de proposer une solution technique fonctionnelle et compatible avec le niveau de réalisme d’un diorama pédagogique.

Présentation générale

La nouvelle motorisation des axes du pont élévateur se compose de 4 plateformes identiques, équipées d’un moteur à courant continu couplé à une boîte de renvoi d’angle à 90°. Sur les 4 axes de couplage, une roue dentelée permet à un capteur optique de mesurer la vitesse de rotation du moteur et ainsi de contrôler la vitesse de déplacement vertical du pont élévateur.

Conception mécanique

Pour définir le design final de cet ensemble et s’assurer de son intégration mécanique dans le diorama, les composants sont sélectionnés dés la phase de conception détaillée en fonction de leurs dimensions et de leurs caractéristiques techniques.

Moteur
Roue codeuse
Engrenage angulaire

Caractéristiques techniques

  • Alimentation . : 12V CC
  • Puissance …… : 7W
  • Vitesse : 2000 tr/min

Sourcing

Caractéristiques techniques

  • Alimentation : 3,3V à 5V CC
  • Sortie : Numérique
  • Capteur : Infrarouge

Sourcing

Caractéristiques techniques

  • Réduction . : 1:1
  • Engrenage : Conique
  • Matière : Nylon et Acier

Sourcing

Moteur à courant continu

Ce modèle de moteur est sélectionné pour ses dimensions mécaniques compatibles avec le rendu réaliste imposé par l’échelle 1/12 du diorama, mais aussi pour ses caractéristiques électriques garantissant le bon fonctionnement final du système. La tension d’alimentation en 12V, associée à une vitesse de rotation nominale élevée, laissent envisager un couple mécanique satisfaisant après réduction de la vitesse de rotation.

Roue codeuse et capteur optique

Ce capteur est sélectionné pour la simplicité de sa mise en œuvre, son encombrement compatible avec l’échelle du diorama et un signal de sortie numérique. Comme le montre la photo, ce modèle est souvent vendu par petit lot de pièces.

Engrenage angulaire

Le choix de ce type d’engrenage est relativement restreint sur un marché grand public autorisant des commandes à l’unité. Ce modèle d’engrenage angulaire est sélectionné pour son rapport de réduction de 1:1 mais aussi pour son design mécanique robuste, équipé de pattes de fixation.

Conception électrique

La conception électrique porte ici essentiellement sur l’armoire électrique qui doit assurer le raccordement de la tension d’alimentation des moteurs ainsi que l’alimentation électrique et le signal de sortie de la roue codeuse.

L’objectif de reproduction réaliste du câblage d’une telle armoire n’est pas envisageable compte tenu des contraintes d’intégration des composants nécessaires. Cependant, les armoires électriques du pont élévateur vont faire l’objet d’une évolution dans leur design, par rapport à la conception des précédentes armoires électriques du diorama du projet BATLab112. L’objectif est de remplacer le bloc de jonction de raccordement de la tension d’alimentation des moteur, par un système à base de switcher de connecteur, faisant office de sectionneur électrique. La roue codeuse sera raccordée quant à elle via un autre connecteur faisant office de bornier électrique.

Connecteur 2 broches
Switch à glissière
Connecteur 3 broches

Caractéristiques techniques

  • Tension ….. : 300V CC
  • Intensité … : 10A
  • Broche …… : 2

Sourcing

Caractéristiques techniques

  • Tension ….. : 50V CC
  • Intensité … : 0,5A

Sourcing

Caractéristiques techniques

  • Tension ….. : 300V CC
  • Intensité … : 10A
  • Broche …… : 3

Sourcing

Modélisation 3D

FreeCAD

Cet article intervient après un changement d’environnement technique autorisé par le changement d’ordinateur. A présent la version 0.21.2 de FreeCAD est utilisée pour une meilleure définition de la conception du projet BATLab112.

La modélisation du poste électrique équipant la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCad V0.21.2

Modélisation des pièces mécaniques

Moteur électrique
Roue codeuse
Engrenage angulaire

Contrairement à d’autres composants utilisés dans les systèmes industriels de la Batcave, aucun modèle 3D n’est disponible librement pour chacun de ces composants. Par conséquent, leur modélisation 3D via FreeCAD s’attache essentiellement à leurs designs généraux pour en définir les dimensions externes.

Modélisation des composant électronique

Les modèles 3D des composants électroniques sont disponibles dans la bibliothèque de GrabCAD

Les fichiers des modèles 3D utilisés lors de la conception préliminaire du poste HT/BT équipant la Batcave du projet BATLab112 sont téléchargés à partir de la plateforme GrabCAD.

Electronic component
Electrical cabinet frame
Electrical cabinet overview

Modélisation d’une plateforme de motorisation

Design d’une plateforme de motorisation d’un axe vertical du pont élévateur

Pour modéliser une plateforme complète, des éléments complémentaires sont ajoutés comme les coupleurs d’axes et le portique de l’armoire électrique assurant la centralisation des raccordements électriques.

Vue d’ensemble

Voir aussi

Articles – Pont élévateur

Articles – Conception détaillée

Local électrique – Conception Détaillée – V3

Cet article présente la troisième version de la conception détaillée, du local électrique à l’échelle 1/12, du diorama de la Batcave du projet BATLab112. Cette mise à jour de cette conception est en lien avec la mise en jour du modèle opérationnel du local technique.


Introduction

Cet article fait suite à la réalisation du premier modèle opérationnel du local électrique du diorama de la Batcave du projet BATLab112.

Batcave Diorama Electricity Station

Présentation générale

Batcave Diorama Electricity Station Design by FreeCad

Modélisation 3D

FreeCAD

Cet article intervient aussi après un changement d’environnement technique autorisé par le changement d’ordinateur. A présent la version 0.21.2 de FreeCAD est utilisée pour une meilleure définition de la conception du projet BATLab112.

La modélisation du poste électrique équipant la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCad V0.21.2

Voir aussi

Articles – Electricité

Articles – Conception détaillée

Local électrique – Conception Détaillée – V2

Screenshot

Cet article présente la deuxième version de la conception détaillée, du local électrique à l’échelle 1/12, du diorama de la Batcave du projet BATLab112. Cette mise à jour de cette conception est en lien avec la réalisation du premier modèle opérationnel du local technique.


Introduction

Cet article fait suite à l’article précédent sur la conception détaillée du local technique et ceux de la fabrication des différents éléments du modèle opérationnel.

Présentation générale

Les modifications par rapport à la précédente version de la conception détaillée :

  • Une quatrième armoire de distribution
  • La structure Cantilever de support des chemin de câbles
  • Un premier design de la passerelle d’accès au local électrique

Une quatrième armoire de distribution

Cette quatrième armoire de distribution, identique dans sa conception au 3 premières est une armoire supplémentaire pour assurer la distribution des tensions 12VDC.

Armoires de distribution

La structure cantilever

Cette structure est conçue comme support au chemin de câble. Le détail de sa conception fera l’objet d’un prochain article en cours de rédaction.

Structure Cantilever de support des chemin de câble

La passerelle d’accès

La conception de cette passerelle n’est pas encore totalement aboutie lorsque cet article sera mis en ligne. Un article dédié est en cours de rédaction.

Passerrelle d’accès au local électrique

Modélisation 3D

FreeCAD

La modélisation du poste HT/BT équipant la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCad V0.19.

Voir aussi

Articles – Electricité

Articles – Conception détaillée

Pont roulant bipoutre – Conception détaillée

Résumé :

Cet article présente la conception détaillée du pont roulant bipoutre du diorama pédagogique de la Batcave, à l’échelle 1/12, du projet BATLab112.

Actualisé :

05 octobre 2023


Introduction

La conception détaillée du pont roulant bipoutre fait suite à la réalisation de son prototype.

Si ce prototype permet de valider le design de la structure du quadrilatère du pont roulant, il reste à présent à définir plus précisément le design des rails de roulement du pont ainsi que le système de festons de câbles électriques.

Vue générale du pont roulant

  • Screenshot n°1 : Armoires de raccordement électrique des moteurs
  • Screenshot n°2 : Festons de câbles électriques
  • Screenshot n°3 : Rails de guidage et butées de fin course
  • Screenshot n°4 : Sommiers du pont roulant
  • Screenshot n°5 : Poutres du pont roulant

Festons de câble

Vues générales

Cette vue en perspective axonométrique plongeante montre le design d’un rail équipé de son feston de câble (Trolleys + Câble).

Cette vue en perspective axonométrique en contre plongée montre le design d’un rail équipé de son feston de câble (Trolleys + Câble).

Vues de détails

Bras de suspension des rails des festons des câbles

Les rails de guidage des festons de câble sont suspendus par des bras. Ces bras sont composés de deux parties : Le bras de suspension du rail et l’étrier de maintien du bras. Le design de ces deux pièces est conçu pour une réalisation par impression 3D. La fixation des étriers sur la structure du diorama est réalisée par des clous à tête suivant l’implantation des rangées de trou. Le nombre d’ensembles bras et étrier reste à définir en fonction des contraintes lors de la fabrication du modèle opérationnel.

Bras de suspension terminaux des festons de câbles

Pour guider le câble vers son point de raccordement électrique et éviter toute tension due au déplacement du pont, deux bras de suspension du rail de guidage sont fixés par un étrier double. Un guide de câble est alors positionné sur le rail entre les deux bras. En passant dans ce guide, le câble est alors dirigé vers son point de raccordement, tout en étant maintenu en position face à la tension exercée sur le câble lors du déplacement du pont roulant.

Trolleys de roulement des festons

Pour garantir le guidage du câble le long de son rail, des trolleys sont utilisés pour supporter le câble et assurer son guidage grâce à 2 séries de 2 rouleaux enserrant la partie inférieure du rail de guidage. Le design de ces pièces est conçu pour une réalisation par impression 3D.

Butées de fin de course

Vues générales

Les butées de fin de course sont placées à l’extrémité des rails de roulement d’un pont roulant. Ces dispositifs constituent une limite physique dans le déplacement du pont roulant, servant de sécurités en empêchant le pont roulant de sortir de ses rails, chuter et faire chuter la charge qu’il transporte.

Les bumpers sont des tampons d’amortissement du choc du contact du pont roulant avec les butées de fin de course. Ils sont installés aux extrémités des deux sommiers du pont roulant (éléments moteur du pont roulant).

Vues de détails

Chacune des quatre butées de fin de course est équipée d’un capteur coupe circuit. Si le pont roulant vient jusqu’au contact d’une butée, il actionne alors son capteur qui coupe l’alimentation électrique des moteurs, entrainant l’arrêt du pont. Le design du corps de ces butées est conçu pour être réaliser par impression 3D. La fixation des butées sur la rail de roulement du pont est réaliser par 6 boulons M2. Le capteur électrique est inséré dans le corps de la butée, maintenu en position par 2 boulons M2.

Bumpers

Le design des bumpers est conçu pour être réaliser par impression 3D. Ils sont fixés sur les extrémités des sommiers par 2 rangées de 3 clous à tête.

Modélisation 3D

FreeCad

La modélisation du pont roulant bipoutre équipant la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCad V0.19.

GrabCAD

Les fichiers des modèles 3D utilisés lors de la conception préliminaire pont roulant bipoutre équipant la Batcave du projet BATLab112 sont téléchargés à partir de la plateforme GrabCAD.

Fabrication

Le design de toutes ces pièces ont été conçus pour être réaliser par impression 3D.

L’impression 3D des pièces des équipements industriels de la Batcave du projet BATLab112 a été réalisée avec une imprimante Anet A8 et le logiciel Cura.

Voir aussi

Articles – Pont roulant

Articles – Conception détaillée

Câblage électrique du diorama

Informations générales

Cet article propose une analyse technique approfondie des choix relatifs au câblage du réseau électrique du diorama pédagogique de la Batcave, reproduisant à l’échelle 1/12 une infrastructure électrique fonctionnelle. Il s’inscrit dans le cadre de la documentation technique du projet, en explicitant la conception et le dimensionnement du réseau de distribution électrique depuis la sortie…

Première publication :

Dernière mise à jour :

Temps de ecture :

8–12 minutes

Introduction

Cet article propose une analyse technique approfondie des choix relatifs au câblage du réseau électrique du diorama pédagogique de la Batcave, reproduisant à l’échelle 1/12 une infrastructure électrique fonctionnelle. Il s’inscrit dans le cadre de la documentation technique du projet, en explicitant la conception et le dimensionnement du réseau de distribution électrique depuis la sortie du convertisseur de puissance jusqu’aux consoles de commande. Cette étude méthodique aborde successivement la structuration du réseau de distribution, l’architecture interne des armoires électriques, les bilans de courant nécessaires à la définition des sections des câbles d’entrée et de sortie, ainsi que les critères retenus pour assurer une chute de tension conforme aux exigences fonctionnelles et de sécurité. Par cette démarche, l’article vise à clarifier les principes de câblage qui garantissent l’alimentation adéquate des éléments actifs du diorama, tout en respectant des contraintes techniques propres à un modèle réduit fonctionnel.

Architecture du réseau électrique du diorama

Le réseau électrique du diorama de la Batcave est conçu pour assurer la distribution de l’énergie nécessaire à l’alimentation des composants actifs, tels que les moteurs, les écrans, les capteurs et les dispositifs d’éclairage à LED. Son architecture est structurée en quatre sous-ensembles fonctionnels distincts.

  • Le poste HT/BT, implanté au niveau −2 du diorama au sein du local électrique, assure le raccordement au réseau domestique 230 V – 50 Hz et la conversion de la tension secteur en très basses tensions continues (12 V, 6 V et 5 V), adaptées aux exigences des différents équipements.
  • Les armoires de distribution, également situées dans le local électrique, permettent la démultiplication et la répartition de ces tensions vers les consoles de commande.
  • Le panneau de raccordement, implanté au niveau −1, centralise l’ensemble des liaisons issues des capteurs et des armoires de distribution avant leur connexion aux consoles.
  • Les consoles de commande, situées au même niveau, assurent le pilotage des composants actifs du diorama en intégrant les commandes manuelles, automatiques et les informations issues des capteurs.

Détail du réseau de distribution électrique vers les consoles de commande des équipements industriels du diorama

Le câblage interne du poste HT/BT ayant déjà fait l’objet d’une étude propre, cet article se focalise sur les armoires de distribution, le câblage électrique depuis la sortie du convertisseur de puissance jusqu’aux consoles de commande.

Armoires de distribution électrique du diorama

Le câblage du réseau de distribution électrique doit être conçu en prenant en considération l’ensemble des liaisons, tant en entrée qu’en sortie des armoires de distribution, ainsi que leur câblage interne. Les conducteurs d’entrée se prolongent au sein des armoires par le câblage interne, organisé dans la colonne descendante située sur la partie gauche de celles-ci. À l’inverse, les conducteurs associés à la colonne montante, disposée sur la partie droite des armoires, assurent la continuité du câblage interne vers l’extérieur et se prolongent par les câbles de sortie en direction des consoles de commande.

Câblage interne des armoires de distribution électrique

Les câbles d’entrée

Les câbles d’entrée, issus du convertisseur de puissance, assurent l’alimentation électrique de l’armoire de distribution. Ils pénètrent dans celle-ci par l’intermédiaire du presse-étoupe « Supply Input », avant d’être raccordés aux interrupteurs-sectionneurs. En aval de ces dispositifs de coupure, les conducteurs sont connectés au porte-fusibles de type Blade Fuse Holder. L’intensité du courant électrique circulant dans les câbles d’entrée correspond à la somme des intensités des courants délivrés par les six voies de sortie de l’armoire.

Les câbles de sortie

Les câbles de sortie sont prélevés sur chacune des six voies du porte-fusibles et raccordés aux bornes d’un connecteur de sortie de type Output Jack. L’intensité du courant circulant dans chaque paire de conducteurs est dimensionnée en fonction des besoins énergétiques d’une seule console de commande, pour la tension fournie par l’armoire de distribution.

Bilan électrique du diorama

Introduction

Le bilan électrique constitue une étape fondamentale dans le dimensionnement d’un réseau électrique, en permettant d’évaluer de manière globale et cohérente les besoins énergétiques d’un système. Il repose sur l’identification et la quantification des puissances et des courants associés à l’ensemble des charges alimentées, en tenant compte de leurs régimes de fonctionnement et de leurs conditions d’exploitation. Cette approche analytique vise à assurer l’adéquation entre les sources d’alimentation, les dispositifs de protection et les conducteurs, tout en garantissant la continuité de service, la sécurité des installations et la conformité aux contraintes normatives.

Métrique du bilan électrique des composants du diorama

Ce bilan électrique a pour but d’évaluer les ordres de grandeur des courants électriques, véhiculés par les câbles, afin de pouvoir en définir leur section. Ce bilan électrique porte sur les valeurs suivantes :

CaractéristiquesDésignation
P0 (mW)Puissance à vide en milli-Watt
Pn (mW)Puissance nominale en milli-Watt
Un (V)Tension nominale en Volt
I0 (mA)Courant à vide en milli-Ampère
In (mA)Courant nominal en milli-Ampère
Is (mA)Courant de décrochage en milli-Ampère ( Pour les moteurs 6VDC )

Information complémentaire

Il est important de noter que ce bilan électrique ne prend pas en compte l’alimentation en énergie électrique des 4 moteurs 12VDC du pont élévateur. Une armoire électrique spécifique au pont élévateur sera développée ultérieurement dans le projet.

Bilan électrique des armoires de distribution 12VDC

Les tensions de 12VDC sont utilisées pour alimenter en énergie électrique les deux Cartes Arduino Mega qui pilotent les deux écrans tactiles de la console. Le tableau suivant présente les bilans électriques d’une carte Arduino Mega à vide et d’un écran tactile TFT 2,8″ en fonctionnement nominal. La somme de ces valeurs correspondent aux valeurs utiles en entrée de la Console de commande.

MatérielP0(mW)Pn(mW)Un(V)I0(mA)In(mA)
Carte Arduino Mega (1)630(*)1252(*)
Ecran TFT 2,8″ (2)(**)3303,3(**)100
Total (Arduino + Ecran) x2192012160

Bilan électrique des armoires de distribution 6VDC

Les tensions de 6VDC sont utilisées pour alimenter en énergie électrique les mini moteurs de la plateforme rotative et du pont roulant, via la console de commande. Le tableau suivant présente le bilan électrique pour le moteur 6VDC 300 RPM de la plateforme rotative et les 2 moteurs 6VDC 10 RPM du pont roulant ainsi le contrôleur L298N.

MatérielPn(mW)Un(V)I0(mA)In(mA)Is(mA)
Mini Moteur 6VDC 10 RPM (1)120610201000
Mini Moteur 6VDC 300 RPM (1)54065090300
Contrôleur L298N (2)4206(*)702000
Total 12006702002300

Bilan électrique des armoires de distribution 5VDC

Les tensions de 5VDC sont utilisées pour alimenter en énergie électrique les cartes électroniques du panneau de commande et les relais implantées dans la console de commande. Le tableau suivant présente le bilan électrique pour les composants actifs ; relais et leds. La carte électronique des relais contient 5 relais. La carte électronique du panneau des commandes contient 7 leds. Pour ce calcul, nous considérons que tous les relais et toutes les leds peuvent être actifs en même temps.

MatérielPn(mW)Un(V)In(mA)
Relais 5VDC (1)450590
Led 3mm Rouge50510
Total Carte Relais (Relais x5)22505450
Total Panneau de Commande (Led x7)350570
Total Electronique Console de Commande26005520

Section des câbles électriques du diorama

Le dimensionnement des sections de câble électrique constitue un élément essentiel de la conception des réseaux de distribution, car il conditionne à la fois la sécurité, la fiabilité et la performance des installations. Il repose sur l’analyse des courants à transporter, des longueurs de liaison et des conditions d’exploitation, afin de limiter l’échauffement des conducteurs et de maîtriser les chutes de tension. Cette démarche intègre également les exigences normatives et les dispositifs de protection, garantissant une alimentation électrique adaptée aux charges tout en assurant la pérennité de l’infrastructure.

Section des câbles d’entrée

Les tableaux suivants, présentes pour chacune des armoires électriques, l’impact du choix de section des câbles d’entrée en fonction du résultats des bilans électriques précédents. La longueur des câble d’entrée est fixée à 1m.

Armoire de distribution 12VDC

La valeur de l’intensité du courant électrique prise pour ce calcul est de 400 mA pour une console de commande, en prenant 20% de marge par rapport au résultat du bilan électrique précédent. Dans la perspective où 6 consoles de commandes sont alimentées en énergie électrique par les 6 sorties de l’armoire de distribution, la valeur de l’intensité du courant électrique prise en référence est de 6 x 400 = 2400 mA.

S (mm2)I(mA)L (m)R (ohm)△U(mV)△U(%)
0,5240010,03720,6%
1240010,02480,4%
1,5240010,01240,2%

Armoire de distribution 6VDC

L’armoire de distribution électrique est dimensionnée pour 6 sorties. Le bilan électrique prend en compte l’utilisation de 2 sorties seulement (Plateforme et Pont roulant). Par conséquent, la valeur de l’intensité du courant électrique est multipliée par 3, soit un total de 600 mA. La valeur de l’intensité du courant électrique prise en référence pour ce calcul est de 720 mA, en prenant 20% de marge, par rapport au résultat du bilan électrique.

S (mm2)I(mA)L (m)R (ohm)△U(mV)△U(%)
0,572010,0321,60,4%
172010,0214,40,2%
1,572010,017,20,1%

Armoire de distribution 5VDC

La valeur de l’intensité du courant électrique prise pour ce calcul est de 630 mA, en prenant 20% de marge, par rapport au résultat du bilan électrique. Dans la perspective ou 6 consoles de commandes sont alimentées en énergie électrique par les 6 sorties de l’armoire de distribution, la valeur de l’intensité du courant électrique prise en référence est de donc de 6 x 630 = 3800 mA.

S (mm2)I(mA)L (m)R (ohm)△U(mV)△U(%)
0,5380010,031142,3%
1380010,02761,5%
1,5380010,01380,8%

Conclusion

Une section de câble au moins égale à 0,5mm2 est suffisante pour obtenir une chute de tension en ligne inférieure à 1% pour les armoires de distribution électrique de 12VDC et 6VDC. Par contre, une section de câble au moins égale à 1,5mm2 est nécessaire pour obtenir une chute de tension inférieure à 1% pour l’armoire de distribution électrique 5VDC.

Section des câbles de sortie

Armoire de distribution 12VDC

La valeur de l’intensité du courant électrique prise en référence est de 200 mA en prenant une marge de sécurité d’au moins 20% par rapport à la valeur du bilan électrique.

S (mm2)I(mA)L (m)R (ohm)△U(mV)△U(%)
0,520020,07140,1%
120020,036< 0,1%
1,520020,024< 0,1%

Armoire de distribution 6VDC

En prenant en compte la configuration la plus sévère (2 moteurs 300 RPM + 1 Contrôleur L298N), la valeur de l’intensité du courant électrique prise en référence est de 200 mA, en prenant une marge de sécurité d’au moins 20% par rapport à la valeur du bilan électrique.

S (mm2)I(mA)L (m)R (ohm)△U(mV)△U(%)
0,520020,07140,2%
120020,0360,1%
1,520020,024< 0,1%

Armoire de distribution 5VDC

La valeur de l’intensité du courant électrique prise en référence est de 650 mA en prenant une marge de sécurité d’au moins 20% par rapport à la valeur du bilan électrique.

S (mm2)I(mA)L (m)R (ohm)△U(mV)△U(%)
0,565020,07460,9%
165020,03200,4%
1,565020,02130,3%

Conclusion

Une section de câble au moins égale à 0,5mm2 est suffisante pour obtenir une chute de tension en ligne inférieure à 1% pour les 3 armoires de distribution électrique.

Bilan de dimensionnement du câblage du réseau électrique du diorama

CâbleLongueurSectionTypeAWG (1)
Depuis Convertisseur vers Armoire1 m1,5 mm2Cuivre15
Depuis Armoires vers Consoles2 m0,5 mm2Cuivre20

Voir aussi

Des articles relatifs à la conception et la fabrication du réseau électrique du diorama

Local électrique – Conception Détaillée – V1

Cet article présente la conception détaillée, du local électrique à l’échelle 1/12, du diorama de la Batcave du projet BATLab112.


Introduction

Le réseau électrique du diorama de la Batcave, développé dans le cadre du projet BATLab112, a pour fonction d’assurer la distribution de l’énergie électrique à l’ensemble des équipements du dispositif. Les quatre systèmes fonctionnels — la plateforme rotative, le pont élévateur, le pont roulant et les bras robotiques — sont pilotés par des consoles de commande dédiées, lesquelles requièrent également une alimentation électrique. En conséquence, la multiplicité des équipements, conjuguée à l’hétérogénéité des niveaux de tension requis, impose la mise en œuvre d’une infrastructure de distribution électrique spécifiquement adaptée.

Pour plus d’informations, voir les articles relatifs à la conception des équipements de la Batcave à l’échelle 1/12 :

Présentation générale

L’ensemble des dispositifs de distribution et de contrôle de l’énergie électrique est centralisé au sein d’un local technique dédié. Ce local assure la fonction de point de raccordement du diorama de la Batcave au réseau électrique, tout en intégrant l’ensemble des équipements nécessaires à la distribution de l’énergie et à son suivi opérationnel. Il abrite notamment le poste de transformation HT/BT ainsi que trois armoires de distribution correspondant aux niveaux de tension requis par les équipements du diorama, à savoir 5 VDC, 6 VDC et 12 VDC.

Structure interne

Présentation générale

A l’échelle 1:1, le module de raccordement, situé en amont du poste HT/BT, permet de raccorder un réseau de distribution électrique Basse Tension (BT), au réseau électrique Haute Tension (HT).

A l’échelle du diorama, l’armoire de raccordement assure le raccordement du réseau électrique de la Batcave, au réseau électrique domestique 230V 50Hz. L’entrée de cette armoire autorise un raccordement à une prise secteur par l’intermédiaire d’un câble électrique de type 3G 1,5 mm2.

Description détaillée

  • Les deux passe-câbles assurent le maintien mécanique du câble en entrée (depuis la prise secteur) et en sortie (vers le convertisseur).
  • Les deux borniers de raccordement assurent la connexion électriques des deux câbles.
  • L’interrupteur sectionneur permet d’isoler le diorama du réseau électrique.

Fonctionnement général

Une fois le raccordement au secteur réalisé, par l’intermédiaire du bornier de raccordement, le basculement de l’interrupteur sectionneur en position haute, permet d’alimenter en énergie électrique le convertisseur de puissance du diorama.

Le basculement de l’interrupteur sectionneur de l’armoire de raccordement en position basse, permet d’isoler complètement le diorama du secteur.

Cette armoire est l’unique point de raccordement au secteur du diorama, afin de garantir la sécurité des utilisateurs.

Modèles 3D

Modèle 3D du presse étoupe, passe câble, utilisé dans les 3 modules du poste HT/BT.
Modèle 3D du bloc de jonction, 230VAC, utilisé comme bornier de raccordement.
Modèle 3D de support de Led, utilisé comme passe câble du module sectionneur.

Modèle 3D des interrupteurs 230VAC utilisés comme sectionneur général du poste HT/BT.

Le convertisseur de puissance

Présentation générale

A l’échelle 1:1, le transformateur est l’équipement central du poste HT/BT. Il assure la transformation de la Haute Tension alternative du réseau de distribution électrique régional, en Basse Tension alternative 230V 50Hz.

A l’échelle du diorama, le transformateur est remplacé par un module – convertisseur de puissance -, qui assure la conversion de la tension secteur alternative 230V 50Hz en basses tensions continues compatibles avec les composants électroniques et actionneurs du projet ; électronique, moteurs…

Description détaillée

  • Les 3 passe-câbles d’entrée assurent le maintien mécanique des câbles :
    • Câble 230VAC, issu de l’armoire de raccordement
    • Câble 12VDC, vers le tableau basse tension
    • Câble des commandes, issu du tableau basse tension.
  • Les 4 passe-câbles d’entrée assurent le maintien mécanique des câbles :
    • Câble 230VAC, issu de l’armoire de raccordement
    • Câble 12VDC, vers le tableau basse tension
    • Câble des commandes, issu du tableau basse tension.
  • Les 4 passe-câbles d’entrée assurent le maintien mécanique des câbles :
    • Câble 5VDC
    • Câble 6V DC
    • Câble 12V DC
  • Le convertisseur 230VAC/12VDC assure la conversion AC/DC de la tension secteur 230V 50Hz.
  • Les convertisseurs DC/DC assure la conversion de la tension 12VDC issue du convertisseur AC/DC en tensions continues plus basses ; 5VDC, 6VDC … compatibles avec les composants électroniques et actionneurs du diorama.
  • La carte électronique des relais assure les commutations des différentes tensions continues de sorties

Fonctionnement général

Lorsque l’interrupteur sectionneur de l’armoire de raccordement est basculé en position haute, le convertisseur 230VAC/12VDC du convertisseur de puissance, est alors alimenté en énergie électrique. Il fournit une tension de 12V continue en sortie. Cette tension alimente alors le panneau basse tension pour contrôler l’alimentation électrique des convertisseurs DC/DC.

Lorsque le convertisseur 230VAC/12VDC est sous tension, et que le bouton d’arrêt d’urgence du panneau basse tension est relâché, un appui sur un des boutons poussoirs du panneau de commande, déclenche la commande d’un relais. Ce relais commute la tension du convertisseur DC/DC correspondant, en sortie du convertisseur de puissance.

Modèles 3D

Modèle 3D de l’alimentation utilisée comme convertisseur 230VAC/12VDC.
Modèle 3D des convertisseurs de tensions 12VDC/6VDC et 12VDC/5VDC.
Modèle 3D des borniers utilisés sur la carte des relais de.commutation des tensions de sortie.
Modèle 3D des relais utilisés pour commuter les tensions de sorties du convertisseur.

Le tableau basse tension

Présentation générale

A l’échelle 1:1, le tableau BT permet de répartir l’énergie électrique sur les différents départs issus du poste de transformation. A l’échelle du diorama, cette armoire centralise les commandes des tensions continues en sortie du convertisseur.

Description détaillée

  • Les deux passe-câbles assurent le maintien mécanique du câble en entrée (depuis la sortie du convertisseur 230VAC/12VDC) et en sortie (vers la carte électronique des relais).
  • Le bornier de raccordement assure la connexion électriques des câbles.
  • La carte électronique – PCB des commandes -, centralise tous les circuits de commande des tensions de sortie du convertisseur de puissance.
  • La carte électronique – PCB des relais -, assure la commutation des différentes tensions de sortie du convertisseur de puissance, sous le contrôle des commandes.
  • Les cartes électroniques sont réalisées en logique câblée, à partir de relais électromagnétiques, de boutons poussoirs et de voyants de visualisation réalisés à partir de LEDs.

Fonctionnement général

Lorsque le convertisseur 230VAC / 12VDC est raccordé au réseau électrique domestique lors du basculement de l’interrupteur sectionneur de l’armoire de raccordement en position haute, il délivre en sortie une tension de 12V DC. Cette tension est alors utilisée pour alimenter en énergie électrique, une carte électronique de commande et une carte de relais qui contrôlent les tensions de sortie du convertisseur de puissance.

Modéles 3D

Modélisation 3D

FreeCAD

Dans cette phase de conception préliminaire, seul le design général de la structure mécanique de la console de commande est modélisé. L’assemblage des différentes sous-parties n’est pas pris en compte ici. Il s’agit avant tout de valider la faisabilité technique de ce design ainsi que son intégration à l’échelle 1/12. Les détails de l’assemblage des différents sous-ensembles se fera lors de la réalisation du premier prototype.

La modélisation du poste HT/BT équipant la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCad V0.19.

Visuels de la conception préliminaires des 3 modules composants le poste HT/BT.

GrabCAD

Les fichiers des modèles 3D utilisés lors de la conception préliminaire du poste HT/BT équipant la Batcave du projet BATLab112 sont téléchargés à partir de la plateforme GrabCAD.

Voir aussi

Articles – Electricité

Articles – Conception détaillée

Armoire de distribution – Conception Détaillée

Cet article présente la conception détaillée, d’une armoire de distribution électrique basse tension, du diorama de la Batcave du projet BATLab112.


Introduction

La réalisation du prototype, du poste HT/BT du diorama, a montré que le mode opératoire utilisé pour fabriquer les armoires électriques n’est pas satisfaisant. L’absence de structure interne ne permet pas d’obtenir une rigidité compatible avec des manipulations régulières, ni de maintenir correctement les éléments internes de l’armoire.

Pour plus d’informations, voir les articles relatifs au poste HT/BT du diorama de la Batcave du projet BATLab112.

L’objectif ici est double. Tout d’abord, développer une structure interne générique pour toutes les armoires électriques du diorama de la Batcave. Ensuite développer des équipements modulaires pour faciliter le câblage de ces armoires à l’échelle 1/12, tout en respectant le plus fidèlement possible les principes mis en oeuvre à l’échelle 1.

Présentation générale

Entrées / Sorties

Les armoires de distribution électriques sont toutes équipées d’une entrée et six sorties. Au moment de la parution de cet article, ce nombre de sortie est supérieur au nombre d’équipements présents dans le diorama de la Batcave du projet BATLab112. Il y a en effet quatre équipements en cours de développement ; la plateforme rotative, le pont élévateur, le pont roulant et les bras robotiques. Ces quatre équipements sont controlés et alimentés en énergie électrique via leurs consoles de commande. Il reste donc 2 sorties non attribuées qui permettront de prendre en compte les évolutions à venir.

Modules internes

Les armoires de distribution électrique sont équipées de deux modules internes ; un sectionneur et un porte fusible. Ces deux modules sont spécifiquement développés pour les besoins du projet BATLab112, en prenant en compte les contraintes liées à une fabrication à l’échelle 1/12, tout en respectant les principes de fonctionnement de tels modules à l’échelle 1.

Ces deux modules sont conçus pour être fixés sur la structure par des boulons de type M2.

Fonctionnement

Lors du basculement du sectionneur vers le haut, la tension d’entrée est alors disponible sur toutes les sorties. Les fusibles assure une protection contre les surintensités qui pourraient se produire suite à un dysfonctionnement d’un des équipements du diorama. Lors du basculement du sectionneur vers le bas (les deux interrupteurs) les circuits des sorties sont alors complètement isolés de l’alimentation en énergie électrique.

La tension d’entrée applicable sur une armoire de distribution électrique peut être une des trois tensions continues utilisées par les équipements du diorama ; 5 VDC, 6 VDC ou 12 VDC. Le courant maximal en sortie est fixé par le calibre des fusibles présents ainsi que la section du câblage interne de l’armoire. Le premier modèle sera équipé de fusibles d’un calibre de 1 A pour chaque sortie, soit un total de 6 A en entrée.

Systèmes existants à l’échelle 1:1

Structure interne

Screenshot 1 : Structure interne – Aperçu 3D 3/4 face
Screenshot 2 : Structure interne – Aperçu 3D 3/4 arrière

Présentation générale

La réalisation du prototype du poste HT/BT a montré que le mode opératoire de fabrication des armoires électriques n’est pas satisfaisant. L’absence de structure interne ne permet pas d’obtenir une robustesse de ces armoires compatibles avec les contraintes auxquelles elles sont soumises, ni avec des manipulations régulières.

Le design d’une nouvelle structure interne permettra de fabriquer des armoires électriques dont les caractéristiques mécaniques seront compatibles avec les contraintes du diorama. Cette structure est destinée à être réalisée par impression 3D.

Description détaillée

Screenshot 1

  1. La structure interne est pourvue de perforations pour l’assemblage boulonné des enveloppes internes et externes.
  2. Les emplacements pour les 6 connecteurs de type Jack en sorties.
  3. L’emplacement pour le presse-étoupe du câble d’entrée, issu du convertisseur de puissance.
  4. Le design général de la structure permet une impression 3D sans option de support pour le surplomb, afin de limiter la quantité de matière utilisée.
  5. La structure interne est pourvue de trous pour l’assemblage boulonnée des armoires sur le sol du local électrique, afin que les armoires électriques restent en place lors de la manipulation de leurs portes, boutons poussoirs ou encore interrupteur.

Screenshot 2

  1. Renforts latéraux pour accroitre la rigidité de la structure
  2. Chanfrein pour prendre en compte le pli des panneaux de l’enveloppe externe.
  3. Barre de renfort et fixation des équipements internes de l’armoire électrique.
  4. Barre de renfort et fixation des équipements internes de l’armoire électrique.
  5. Barre de renfort et fixation des équipements internes de l’armoire électrique.
  6. Barre de renfort et fixation des équipements internes de l’armoire électrique.

Le module sectionneur

Screenshot 3 : Sectionneur – Aperçu 3/4 face
Screenshot 4 : Sectionneur – Aperçu 3/4 arrière

Présentation générale

Le sectionneur de l’armoire de distribution électrique permet d’isoler le réseau électrique desservi par l’armoire, de l’alimentation en énergie électrique.

Description détaillée

Screenshot 3

  1. Guide de fixation des borniers de câblage
  2. Bornier de câblage d’entrée réalisé à partir d’un domino électrique 230V 1,5mm2.
  3. Structure de montage du sectionneur réalisée par impression 3D.
  4. Deux interrupteurs à bascule comme sectionneur coupe circuit.
  5. Bornier de câblage de sortie réalisé à partir d’un domino électrique 230V 1,5mm2.

Screenshot 4

  1. Patte de fixation du module sectionneur sur la structure interne de l’armoire électrique.
  2. Structure du module sectionneur réalisé par impression 3D.
  3. Perforation pour faciliter le montage des borniers de câblage.

Le porte fusible

Screenshot 5 : Porte fusible – Aperçu 3/4 face
Screenshot 6 : Porte fusible – Aperçu 3/4 face

Présentation générale

Les fusibles protègent les circuits électriques contre les surintensités. Pour protéger les 6 circuits de sorties de l’armoire de distribution, 6 portes fusibles sont donc nécessaires. Cependant, pour des raisons d’encombrement de ces portes fusibles et pour s’assurer que le câblage associé soit simple, la solution retenue repose sur un porte fusible intégré de 6 fusibles plats.

Description détaillée

Screenshot 5

  1. Borniers de câblage des bornes positives des circuits.
  2. Fusibles plats.

Screenshot 6

  1. Borniers de câblage des bornes négatives des circuits.

Modélisation 3D

FreeCAD

Dans cette phase de conception préliminaire, seul le design général de la structure mécanique de la console de commande est modélisé. L’assemblage des différentes sous-parties n’est pas pris en compte ici. Il s’agit avant tout de valider la faisabilité technique de ce design ainsi que son intégration à l’échelle 1/12. Les détails de l’assemblage des différents sous-ensembles se fera lors de la réalisation du premier prototype.

La modélisation du poste HT/BT équipant la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCad V0.19.

Design 3D

Un aperçu de quelques designs complémentaires conçus spécifiquement pour les besoins du projet BATLab112.

GrabCAD

Les fichiers des modèles 3D utilisés lors de la conception préliminaire du poste HT/BT équipant la Batcave du projet BATLab112 sont téléchargés à partir de la plateforme GrabCAD.

Modèles 3D

Ces modèles, téléchargés depuis la plateforme GrabCAD, sont utilisés dans cette phase de conception détaillée, afin de valider les assemblages mécaniques entre ces différents sous-ensembles.

Voir aussi

Articles – Electricité

Articles – Conception préliminaire