Electronique du pont élévateur – Prototype Ep2

À la suite du premier article sur la version initiale de l’électronique du pont élévateur, celui-ci présente les principales évolutions techniques mises en œuvre.… Lire la suite →

Première publication :

Dernière mise à jour :

Temps de lecture :

3–5 minutes

Article précédent :

Introduction

Le premier prototype du système électronique destiné à la commande des quatre moteurs du pont élévateur du diorama pédagogique de la Batcave a mis en évidence plusieurs dysfonctionnements. Ceux-ci résultent principalement d’un choix de composants inadapté lors de la phase de conception, notamment au regard des performances attendues du système. Plus précisément, le prototype a révélé les limites techniques des quatre convertisseurs fréquence-tension utilisés comme interface entre les plateformes moteurs et la console de commande.

Les moteurs fonctionnant à des fréquences inférieures à 500 Hz, les convertisseurs délivrent des tensions de sortie présentant des variations inférieures à 50 mV. L’acquisition, la transmission et le traitement de ces signaux de très faible amplitude induisent un taux d’incertitude trop élevé pour garantir un fonctionnement suffisamment fiable et prévenir les risques de blocage du pont élévateur.

Présentation générale

Evolution de la conception

L’objectif principal de ce nouveau prototype est de valider le principe des modifications proposées à la conception initiale. Celles-ci reposent notamment sur le remplacement des quatre modules de conversion fréquence-tension par une carte à microcontrôleur de type Arduino.

Un second objectif consiste à évaluer l’intégration d’un écran LCD I2C associé au microcontrôleur, permettant l’affichage local des vitesses de rotation des moteurs ainsi que leur traitement au plus près des plateformes. Cette amélioration, non envisagée dans la conception initiale, a émergé lors de l’utilisation de la plateforme TinkerCAD, au cours de la simulation du remplacement des modules de conversion par un Arduino.

Un troisième objectif vise à valider un nouveau mode d’échange d’informations entre l’armoire électrique d’acquisition des signaux issus des capteurs optiques et la console de commande. Le premier prototype reposait sur la transmission de quatre signaux analogiques correspondant aux tensions en sortie des convertisseurs. L’intégration d’un microcontrôleur dans l’armoire électrique permet désormais d’envisager une communication plus fiable via les ports série (Rx/Tx). Le traitement des signaux est ainsi déporté vers ce microcontrôleur, libérant celui de la console de commande, qui est alors exclusivement dédié à la mise à jour de l’affichage sur l’écran TFT 2,8″.

Description générale du système

Comme indiqué dans la conclusion de l’analyse du premier prototype, l’architecture générale du système électronique a été globalement reconduite. Le dispositif comprend ainsi les quatre plateformes moteurs assurant l’entraînement des axes du pont élévateur, connectées à deux armoires électriques distinctes :

  • une armoire [1] dédiée à l’acquisition et au traitement des signaux en fréquence issus des capteurs optiques des plateformes ;
  • une armoire [2] destinée à la commande du sens et de la vitesse de rotation des moteurs.

Dans le cadre de ce nouveau prototype, un microcontrôleur Arduino UNO R3, déjà disponible dans le stock du projet BATLab112, a été retenu pour remplacer les quatre modules de conversion. Ce choix, fondé sur une démarche de rationalisation des coûts, demeure provisoire et pourra évoluer au cours des phases ultérieures du projet.

Implantation des nouveaux éléments

  • Le microcontrôleur Arduino Uno est installé à plat devant les armoires électriques.
  • L’écran LCD i2C est positionné de face, à proximité.
  • La liaison de transmission série entre les microcontrôleurs est assurée par le câble bleu et blanc.
  • Les quatre câbles transmettant les signaux en tension des convertisseurs vers la console de commande ont été supprimés : l’Arduino Uno est désormais connecté, via l’armoire n°1, directement aux sorties des capteurs optiques des plateformes moteurs.
  • Le câble transmettant la commande de vitesse entre la console et l’armoire n°2 a été retiré. L’Arduino Uno fournit désormais quatre signaux à rapport cyclique réglable, permettant de piloter indépendamment la vitesse de rotation de chaque moteur.

Conclusions

La conclusion de l’article consacré au premier prototype soulignait deux axes principaux d’amélioration :

  • Le remplacement des convertisseurs fréquence-tension par un microcontrôleur Arduino
  • L’amélioration de l’esthétique et de la robustesse des PCB des borniers des armoires électriques.

Le présent travail confirme la validité du principe de remplacement des convertisseurs par un microcontrôleur. Il reste toutefois à déterminer le modèle Arduino le plus adapté pour une intégration définitive au sein de l’armoire électrique d’acquisition et de traitement des signaux issus des capteurs optiques des plateformes moteurs. Un premier état des lieux indique que l’usage de modules Arduino Nano serait pertinent, leurs dimensions et caractéristiques répondant aux contraintes d’intégration et de performance. Leur déploiement sera effectué lors de la révision de l’implantation interne des armoires électriques.

Enfin, la refonte des PCB des borniers des deux armoires électriques sera également réalisée au cours de cette même phase de réaménagement interne.trique sera aussi mise en oeuvre lors de la reprise de l’implantation interne de ces deux armoires.

Voir aussi

Articles – Pont élévateur

Story – Pont élévateur

Articles – Prototypes

Pont élévateur – Electronique – Prototype

Cet article présente le premier prototype de l’électronique de commande du pont élévateur du diorama de la Batcave du projet BATLab112.… Lire la suite →

Première publication :

Dernière mise à jour :

Temps de ecture :

7–11 minutes

Introduction

Suite à la conception détaillée de l’électronique de commande du pont élévateur du diorama de la Batcave, l’objectif de ce prototype est de valider le principe de fonctionnement de cette électronique. Il s’agit dans un premier temps, de réaliser les prototypes des deux armoires électriques, contenant les montages électroniques de distribution de l’énergie électrique des moteurs et de mesures de leurs vitesses de rotation. Dans un deuxième temps, le câblage de ces armoires avec les plateformes moteurs et la console de commande, doit permettre de valider le fonctionnement global de ce système.

Ce prototype ne présente pas encore un niveau de finition abouti, compatible avec les ambitions de réalisme d’un diorama. La structure interne des deux armoires électriques principales est apparente, ainsi que celles des plateformes moteurs. Le câblage est très expérimentale et la console de commande est seulement simulée par un affichage sommaire sur un écran, même si des modèles opérationnels fonctionnent déjà pour la plateforme rotative et le pont roulant.

Implantation du prototype

Initialement, ce prototype devait être mis en oeuvre en situation, au sein du diorama de la Batcave. L’intérêt premier était de bénéficier de la proximité du local électrique du diorama de la Batcave, pour alimenter en énergie électrique les différents sous-ensembles électroniques ; moteurs, armoires électriques … Le deuxième intérêt était de disposer de l’environnement opérationnel du diorama de la Batcave comme décor, dans les publications sur les réseaux sociaux faites sur l’avancement du projet.

Finalement, le prototype de ce système électronique est réalisé à part du diorama de la Batcave. La manipulation des différents composants électriques et mécaniques est ainsi rendue plus aisée lors des différentes modifications opérées pendant la mise au point. Sa mise en oeuvre dans une enceinte en carton a notamment permis d’améliorer la gestion du câblage grâce aux tubes en aluminium, sans pour autant avoir eu besoin de concevoir et de fabriquer une structure mécanique spécifiques.

Cette enceinte en carton a aussi servi d’arrière plan dans les mises en scène des publications sur les réseaux sociaux, présentant l’avancement de ce système.

Présentation générale

Cette vidéo présente les différents éléments physiques de ce système électronique. Chaque élément est une reproduction à l’échelle 1/12 d’éléments réels d’un système électromécanique capable d’actionner les quatre axes d’un pont élévateur, pour une charge équivalente à celle de la Batmobile réelle d’une masse d’environ 4 tonnes. Cependant, une reproduction de l’aspect visuel et du fonctionnement d’origine de ces éléments électromécaniques réels n’est pas envisageable à cause des contraintes techniques induites par l’utilisation de technologies électroniques. Pour autant, l’architecture de ce système à l’échelle 1/12, le profil de chaque élément ainsi que leurs modes de fonctionnement restent très réaliste.

Quelques détails

Les armoires électriques

Photo extrait n°001

L’armoire électrique de gauche contient l’électronique de mesure de la fréquence de rotation des 4 moteurs, dont 4 cartes PCB manufacturées convertisseur de fréquence en tension.
L’armoire électrique de droite contient l’électronique de distribution de l’énergie électrique vers les 4 moteurs, dont 2 cartes PCB manufacturées d’un double Pont en H.
Les structures de ces deux armoires électriques sont toutes les deux identiques aux modèles opérationnels développés pour le poste électrique du diorama. Elles sont fabriquées par impression 3D ainsi que tous les supports internes de PCB et les chemin de câbles.


Pour plus d’infos :

Les plateformes moteurs

Photo extrait n°002

Les prototypes de 4 plateformes moteurs d’entrainement des 4 axes verticaux du pont élévateur ont été précédemment réalisés et testés mécaniquement et électriquement, mais sans être couplés avec les axes du pont élévateurs.


Pour plus d’infos :

La console de commandes

Photo extrait n°003

La console de commande est réduite à une simple maquette électronique et d’une carte Arduino Mega, équipée d’un écran 2,8″. La partie gauche de la plaque de prototypage supporte le montage électronique d’un générateur de signal carré, cadencé à une fréquence de 2Hz, servant de signal d’horloge pour l’échantillonnage des mesures et de leurs affichages. La partie de droite, supporte deux switches pour piloter le sens de rotation des moteurs, ainsi que le montage électronique d’un générateur de signal carré, dont la variation du rapport cyclique commande la variation de vitesse de rotation.


Pour plus d’infos :

Le câblage

Photo extrait n°004

Le câblage est très expérimentale. Il n’a fait l’objet d’aucune conception en amont. Le câblage est réalisé à partir de câbles électriques issus de récupération, équipés de connecteurs de type Jack Audio 3,5 mm.
L’aspect expérimentale se justifie par le fait qu’il est toujours difficile d’anticiper le volume occupé par les câbles particulièrement en interne des armoires. Modéliser ce câblage lors de la phase de conception serait très chronophage. De plus, la modélisation du câblage aurait imposée de modéliser la structure supportant le câblage, ce qui aurait encore ajouter à l’aspect chronophage de cette tâche.


Pour + d’infos :

Fonctionnement général

La vidéo présente le principe de fonctionnement général de ce système électronique. Elle met en évidence la commande du sens de rotation des 4 moteurs, par l’intermédiaire de la combinaison des deux switches de la console de commande, ainsi que des PCB des doubles Ponts en H installés dans l’armoire électrique de contrôle de l’alimentation électrique des moteurs. La vidéo présente aussi la relation entre le rapport cyclique du signal carré issu de la console de commandes et la vitesse de rotation des moteurs.

Vue d’ensemble du prototype en fonctionnement

Analyse critique du résultat obtenu

Le fonctionnement général du système électronique, de commandes et de mesures de la fréquence de rotation des moteurs du pont élévateur, tel qu’il a été conçu, est opérationnel. Cependant, il reste des points d’amélioration importants tant sur le plan fonctionnel que sur le plan esthétique.

Esthétique finale des connecteurs des PCB

Photo extrait n°005

Sur le plan esthétique, au-delà de l’absence d’habillage des armoires électriques qui fera l’objet d’une mise en oeuvre ultérieure, les PCB supportant les fonctions de bornier de raccordement dans les deux armoires électriques, ainsi que le câblage interne de l’armoire électrique de mesure, présentes des stigmates de leur manipulation intensive lors de la phase de mise ou point. Ces PCB utilisent des connecteurs de petite taille, ne leur permettant pas de proposer un boitier mécanique suffisamment robuste pour encaisser les torsions induites par l’action des tournevis sur les vis.

Ce type d’inconvénient a déjà été rencontrés pour les connecteurs des PCB contenus dans les armoires de raccordement électrique des plateformes moteurs. Des pièces fabriquées par impression 3D ont alors permis de solidariser plusieurs connecteurs entre eux, améliorant ainsi leur rigidité mais aussi leur esthétique générale pour tendre vers un rendu plus réaliste.

Esthétique finale du câblage interne des armoires électriques

Photo extrait n°006

Si l’aspect du câblage externe des armoires électriques parait si anarchique (voir Photo extrait n°004), c’est la conséquence directe d’une part d’une absence préalable de conception et d’autre part d’une démarche expérimentale dans sa mise en oeuvre afin de tester différents types de connecteurs.

Par contre l’encombrement du câblage interne des armoires électriques a visiblement était sous dimensionné dans la phase de conception. Ce défaut est amplifié par un sous dimensionnement de la fonction de bornier des PCB spécifiquement conçus pour cela.

Sur le plan fonctionnel, ce prototype permet de mettre en évidence les limites techniques des quatre convertisseurs de fréquences en tension, utilisé dans l’armoire électrique n°1, pour servir d’interface entre les plateformes moteurs et la console de commandes. Même si le besoin n’est pas d’obtenir une valeur reflétant précisément une fréquence de rotation, pour autant il est important que chaque évolution de la vitesse de rotation de chaque moteur puisse être décelée pour éviter un blocage du pont élévateur. Les fréquences relativement basses de rotation des moteurs (inférieure à 500Hz) induisent des variations de tensions en sorties des convertisseurs, inférieurs à 50 mV. L’électronique d’acquisition, de transmission et de traitement de ces signaux de faibles amplitudes, induit des taux d’erreur trop important pour considérer son fonctionnement comme suffisamment fiable pour prévenir un blocage du pont élévateur.

Par conséquent, ces PCB de conversions des signaux de fréquences en tension doivent être remplacés par d’autres dispositifs, avec un impact le plus réduit possible, sur la conception générale du système électronique global.

Conclusions

Compte tenu de l’analyse précédente, et de la préparation de l’intégration de ce système dans le diorama de la Batcave, des modifications doivent être apportées sur certains éléments.

Remplacer les modules convertisseurs de fréquences en tension

Cette action est certainement la plus déterminante des modifications à apporter. L’objectif est de proposer des modules dont l’évolution de l’amplitude des signaux de tension en sortie soit significative pour en obtenir des mesures fiables. La solution consistant à concevoir, puis réaliser des PCB sur mesure convertisseur de fréquence en tension, a déjà été écartée depuis la conception détaillée de ce système électronique, pour des raisons de temps et de qualité de réalisation. Il reste donc deux pistes de réflexion à l’étude. La première consiste à reprendre une phase de recherche de PCB manufacturés plus adaptés aux fréquences du système. La deuxième consiste à remplacer les PCB dédiés à cette fonction par des éléments plus génériques mais programmables, comme par exemple des cartes Arduino.

Quelque soit la solution de remplacement qui sera choisie, il parait incontournable de prévoir aussi une modification des PCB servant de Bornier de raccordement électrique de ces modules dans l’armoire électrique concernée.

Une phase de conception complémentaire doit être mise en oeuvre pour cela.

Améliorer la présentation esthétique des PCB borniers

La solution a déjà été évoquée et mise en oeuvre dans les armoires de raccordement électrique des plateformes moteurs. Il s’agit de concevoir et d’imprimer en 3D des pièces reproduisant la fonction de sabot de charpente. Ces pièces permettent tout d’abord un regroupement visuel de plusieurs composants électroniques, sous ensembles d’une même fonction. De plus, ces pièces assurent une meilleure rigidité mécanique de l’ensemble qu’elles forment avec les connecteurs et évitent ainsi les déformations liées à la torsion de l’action du tournevis sur les vis de serrage.

Une phase de conception complémentaire doit être mise en oeuvre pour cela.

Voir aussi

Articles – Pont élévateur

Articles – Prototypes

Pont élévateur – Prototype – Plateforme moteur

Cet article présente le premier prototype des plateformes de motorisation des axes du pont élévateur à l’échelle 1/12, du diorama de la Batcave du projet BATLab112.


Introduction

L’article précédent celui-ci, présente la conception détaillée de la plateforme de motorisation des axes du pont élévateur. Cet article se focalise sur le design des composants de la plateforme et leurs dimensionnement pour aboutir à leurs modélisation 3D sur FreeCAD. Cette modélisation permet notamment de s’assurer de la bonne intégration du design général des plateformes de motorisation dans le diorama de la Batcave.

Présentation générale

Pour rappel, le fonctionnement de ces plateformes de motorisation des axes du pont élévateur, repose sur trois composants actifs : un moteur, une roue codeuse et un engrenage à renvoi d’angle. Comme ces composants ont déjà été spécifiés dans l’article de conception détaillée, il s’agit ici, plus particulièrement, de focaliser sur la fabrication des pièces nécessaires pour assembler ces composants actifs sur la plateforme.

Sourcing

Le sourcing des composants actifs et des pièces mécaniques est réalisé à partir d’une plateforme de ventes en ligne. Ce choix est essentiellement dicté par un objectif de limiter le nombre de fournisseur, mais aussi de permettre une centralisation des commandes et ainsi d’envisager des économies d’échelle, notamment sur les frais de livraison.

Pour plus d’informations concernant les caractéristiques de ces composants, voir l’article sur la conception détaillée des plateformes moteurs :

Support moteur

Le support moteur se compose de deux parties réalisées par impression 3D. Le design de ces deux parties est très similaire, la seule différence réside dans l’espace dédié au passage des câbles électriques sur la partie arrière. Chaque partie de ce support est montée sur le moteur par ajustement. La fixation de l’ensemble sur la plateforme est réalisé par boulonnage.

Modélisation 3D sur FreeCAD
Impression via CURA sur imprimante 3D Anet A8

Support du capteur de la roue codeuse

Le capteur de vitesse se compose d’une roue codeuse et d’un capteur photocoupleur fixe qui convertit la vitesse de rotation de la roue codeuse en signal électrique.

Le support du capteur photocoupleur se compose d’une seule pièce réalisée par impression 3D. Ce support assure le maintien du capteur en position et assure la fixation de l’ensemble sur la plateforme, par boulonnage.

Modélisation 3D sur FreeCAD
Conversion des fichiers STL sur CURA
Impression par imprimante 3D Anet A8

Support de l’engrenage à renvoi d’angle

Ce support se compose de deux parties, réalisées par impression 3D, qui s’assemblent par emboitement. La forme de la partie supérieure du support assemblé est conçue pour maintenir latéralement l’engrenage à renvoi d’angle qui est fixé ensuite par boulonnage. Le support assure la fixation de l’ensemble sur la plateforme par boulonnage.

Modélisation 3D sur FreeCAD
Conversion des fichiers STL sur CURA
Impression par imprimante 3D Anet A8

Armoire électrique

La phase de conception détaillée de la plateforme a apportée une modification au design de la structure des petites armoires électriques par rapport à celles déjà existantes sur le diorama. Ce nouveau design permet de prendre en compte le remplacement du bloc de jonction, initialement présent dans l’armoire, par un mini PCB. Cette structure est réalisée par impression 3D.

Modélisation 3D sur FreeCAD
Conversion des fichiers STL sur CURA
Impression par imprimante 3D Anet A8

Portique de l’armoire électrique

Le portique permet le montage par boulonnage de l’armoire électrique de la plateforme moteur. Le portique est réalisé par impression 3D.

Modélisation 3D sur FreeCAD
Conversion des fichiers STL sur CURA
Impression par imprimante 3D Anet A8

Modélisation 3D

La modélisation du poste électrique équipant la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCad V0.21.2

Impression 3D

L’impression 3D des pièces des équipements industriels de la Batcave du projet BATLab112 a été réalisée avec une imprimante Anet A8 et le logiciel Cura.

Prochaine étape

La première version de la conception détaillée de tous les composants mécaniques du pont élévateur est achevée. La prochaine étape consiste à concevoir et réaliser le prototype de l’électronique de commande.

Voir aussi

Articles – Pont élévateur

Articles – Prototype

Prototype fonctionnel d’armoire de distribution électrique basse tension pour diorama

Informations générales

L’article présente la fabrication d’un prototype d’armoire de distribution électrique basse tension pour le diorama du projet BATLab112, conçu pour distribuer les tensions 5 VDC, 6 VDC et 12 VDC vers les consoles de commande. Il expose les retours d’expérience des prototypes antérieurs, l’impression 3D de la structure interne et la modification du design pour résoudre les échecs…

Première publication :

Dernière mise à jour :

Temps de ecture :

6–9 minutes

Mots clés :


Introduction

À l’issue de la phase de conception détaillée du modèle d’armoire de distribution électrique du diorama, l’objectif consiste désormais à réaliser un premier prototype fonctionnel. Cette étape vise à valider les choix techniques retenus avant la fabrication des quatre modèles opérationnels destinés à assurer la distribution des tensions 5 VDC, 6 VDC et 12 VDC vers les quatre consoles de commande des équipements industriels intégrés au diorama.

Retour d’expérience sur les armoires de raccordement électrique

Le retour d’expérience issu des prototypes antérieurs des armoires de raccordement du poste HT/BT a mis en évidence que l’absence de structure interne ne permet pas d’assurer une rigidité mécanique satisfaisante. Bien que l’enveloppe de ces armoires, réalisée à partir d’emballages de produits alimentaires, puisse apparaître suffisamment rigide lors de la phase de fabrication, cette rigidité s’avère insuffisante lors des phases de manipulation et d’exploitation. En conséquence, l’enjeu principal de la réalisation de ce prototype réside dans la validation de la faisabilité technique d’une structure interne réalisée par impression 3D.

Impression 3D de la structure interne d’une armoire électrique du diorama

Fabrication par impression 3D de la structure issue de la conception détaillée

Le design monobloc de la structure interne des armoires de distribution électrique a fait l’objet d’une analyse approfondie lors de la phase de conception détaillée. L’un des objectifs principaux de cette étude était de limiter la quantité de matière utilisée, en particulier celle associée aux éléments de support. À cet effet, la géométrie retenue se caractérise par des zones en surplomb conçues sous forme d’arches, ne nécessitant aucun support d’impression lors du procédé de fabrication additive. Cette approche permet ainsi d’éliminer toute production de matière résiduelle liée aux supports d’impression.

Deuxième impression 3D : analyse d’un échec de fabrication

Malgré l’attention particulière portée à la conception de ce design, la seconde tentative d’impression s’est soldée par un échec de fabrication. Lors de cette opération, la tête de l’imprimante 3D est entrée en collision avec le modèle en cours d’impression, comme l’illustre la photo associée. Afin de limiter les pertes de matière et de temps, aucune nouvelle impression de ce design n’a été engagée à ce stade.

À ce jour, la cause principale avancée pour expliquer cet incident semble être liée à la taille du fichier numérique stocké sur la carte SD utilisée par l’imprimante 3D Anet A8 du projet BATLab112. Il apparaît en effet que le lecteur de carte SD de la carte électronique de l’imprimante présente des dysfonctionnements lors de la lecture de fichiers volumineux, en particulier lorsque la carte a fait l’objet de multiples cycles d’écriture et de suppression.

Afin de prévenir la récurrence de ce phénomène, deux mesures correctives ont été mises en œuvre. La première consiste à recourir à des cartes SD de faible capacité (8 Go), dédiées exclusivement au stockage des fichiers définitifs avant impression, en limitant les opérations d’écriture. La seconde, détaillée dans le chapitre suivant, repose sur une modification du design du prototype visant à réduire les durées d’impression des pièces.

À la date de mise en ligne de cet article, l’application conjointe de ces deux actions a permis d’éliminer l’apparition de ce dysfonctionnement.

Évolution du design de la structure interne des armoires électrique du diorama

Le nouveau design résulte d’une approche alternative fondée sur la décomposition de la structure en plusieurs éléments distincts, comme l’illustre la capture d’écran de la vue éclatée réalisée à l’aide du logiciel FreeCAD. L’intérêt de cette démarche réside dans la conception de pièces de dimensions réduites et de géométrie majoritairement plane, permettant de diminuer les temps d’impression et de s’affranchir de l’utilisation de supports d’impression. En contrepartie, cette approche implique la définition et la conception des interfaces d’assemblage entre les différents éléments constitutifs de la structure.

Bien que cette méthode de conception ne permette pas d’exclure totalement la réapparition des dysfonctionnements précédemment observés, elle garantit néanmoins une réduction significative de l’impact potentiel en termes de durée d’impression et de quantité de matière susceptible d’être perdue.

Modélisation 3D du nouveau design de la structure interne des armoires électriques du diorama avec FreeCAD

La modélisation du poste HT/BT équipant la Batcave du projet BATLab112 a été réalisé avec le logiciel FreeCad V0.19.

Impression 3D d’une structure modulaire des armoires électriques du diorama

Préparation du fichier pour impression 3D avec Cura

Impression 3D des éléments de la structure modulaire

Chaque élément constituant la structure interne de l’armoire de distribution est imprimé individuellement. Les deux côtés de l’armoire présentent une symétrie identique, impliquant l’impression en double du même design. Afin de réduire les durées d’impression, les pièces ont été réalisées en qualité « Normal » avec une épaisseur de couche de 0,15 mm. Ce réglage n’offre pas le rendu optimal en termes de finition de surface, mais il reste satisfaisant, la structure interne n’étant ni visible de l’extérieur ni significativement perceptible de l’intérieur.

L’ensemble de ces pièces a été imprimé sans rencontrer la problématique observée précédemment avec le modèle monobloc, confirmant la pertinence de l’approche de décomposition du design.

L’impression 3D des pièces des équipements industriels de la Batcave du projet BATLab112 a été réalisée avec une imprimante Anet A8 et le logiciel Cura.

Assemblage de la structure des armoires électriques du diorama

L’assemblage de la structure est réalisé par emboitement des pièces. Les côtes des éléments d’assemblage tenon-mortaise ont été obtenues de manière empirique pour prendre en compte la précision d’impression.

Fabrication du module sectionneur des armoires de électrique du diorama

Impression 3D de la structure mécanique du sectionneur électrique

Pour des raisons de gestion des temps d’utilisation de l’imprimante, les pièces composant le sectionneur sont imprimées unitairement.

Assemblage des composants du sectionneur électrique

L’assemblage des différentes pièces du sectionneur est réalisé à l’aide de boulons de type M2. Les blocs de jonction électrique sont positionnés dans leurs supports respectifs, lesquels sont ensuite fixés sur le corps principal du sectionneur. Les deux interrupteurs sont maintenus par deux écrous chacun. Dans les modèles opérationnels, afin de prévenir tout desserrage des écrous susceptible de provoquer leur chute à l’intérieur de l’armoire électrique sous tension — et donc d’engendrer des courts-circuits —, l’utilisation de frein-filet est prévue sur l’ensemble des boulons.

Câblage interne du module sectionneur électrique du diorama

Le câblage est réalisé à l’aide de conducteurs en cuivre rigide de couleur rouge et bleue, d’une section de 2,5 mm². Cette section dépasse les exigences des normes de câblage électrique, compte tenu du courant maximal de 6 A circulant dans ces conducteurs. Par ailleurs, cette configuration offre un rendu esthétique satisfaisant.

Fabrication du module porte fusible des armoires électrique du diorama

Lors de la phase de conception détaillée, le design du porte-fusible a fait l’objet d’une étude spécifique. Aucun des modules disponibles sur le marché ne répondait pleinement aux exigences du projet, tant en termes de nombre de voies que de dimensions. La fabrication d’un porte-fusible complet aurait été fastidieuse et aurait présenté un résultat incertain sur le plan des contraintes mécaniques et électriques. Par conséquent, le choix s’est porté sur l’utilisation d’un boîtier automobile à six voies avec point commun, dont l’enveloppe mécanique peut être modifiée afin de répondre aux contraintes d’intégration au sein de la structure de l’armoire.

Impression 3D des supports mécaniques du module porte fusible

Impression 3D des chemins de câble du module porte fusible

Assemblage du module porte fusible

Assemblage final des modules composants une armoire de distribution électrique du diorama

Câblage interne d’une armoire de distribution électrique du diorama

Le bloc porte-fusibles est connecté à la sortie du sectionneur à l’aide de deux conducteurs en cuivre rigide de section 2,5 mm². L’emploi de cette section, identique à celle utilisée pour le sectionneur, assure la cohérence du câblage ainsi que le respect des normes électriques en vigueur. Par ailleurs, chaque connecteur de sortie de l’armoire est raccordé au bloc porte-fusibles au moyen de deux conducteurs de calibre 20 AWG.

Voir aussi

Des articles sur l’avancement du réseau électrique du diorama

Des articles sur la fabrication des prototypes d’autres équipements industriels à l’échelle 1/12

Console de commande – Electronique – Ep1

Cet article présente la conception électronique du prototype de commande de la console de commandes du diorama de la Batcave du projet BATLab112.


Introduction

La réalisation du diorama technique du projet BATLab112 requiert la mise en œuvre d’une infrastructure de commande fiable, didactique et cohérente avec les fonctions attendues du dispositif final. La console de commande, élément central de l’interface opérateur, constitue à ce titre un module critique. Elle assure l’articulation entre les commandes manuelles, les systèmes d’automatisation futurs et l’ensemble des actionneurs mécaniques, notamment le moteur de la plateforme rotative.

Après validation du concept mécanique de la console et de l’agencement des composants électroniques (écrans, boutons, commutateurs, microcontrôleurs), une première étape de prototypage électronique a été entreprise. L’objectif de cette phase est de vérifier la pertinence des choix techniques, d’évaluer l’ergonomie des modes de commande et de valider les comportements fonctionnels avant passage à une intégration définitive.

Le présent document propose une description détaillée de cette première version électronique, de son architecture générale aux essais menés sur maquette, en adoptant une démarche rigoureuse conforme aux standards de conception en électronique appliquée.

+ d’infos sur la conception préliminaire de la console de commande :

Schéma électronique

Architecture générale du système

La structure électronique de la console de commande repose sur un schéma de principe élaboré à l’aide du logiciel libre KiCad, choisi pour sa flexibilité, sa richesse fonctionnelle et sa compatibilité avec les environnements de prototypage rapide.

L’architecture est organisée en deux sous-systèmes principaux :

  1. Le module de gestion des commandes manuelles, intégrant les commandes de l’opérateur (boutons, commutateurs, voyants).
  2. Le module d’interface de puissance, assurant la mise en forme et la distribution des signaux vers le moteur à courant continu responsable de la rotation de la plateforme.

Cette séparation fonctionnelle répond à un impératif de lisibilité du schéma mais également à une logique de modularité favorisant les évolutions ultérieures.

KiCad

Ce schéma électronique est réalisé avec la suite logicielle KiCad distribuée librement.

Sous-système de gestion des commandes

La partie supérieure du schéma se divisent en 5 parties dédiées à la gestion des commandes. La partie inférieure du schéma est dédiée à l’interface entre les commandes et l’alimentation du moteur de rotation de la plateforme.

Mise sous tension – arrêt général

La mise sous tension générale est réalisée au moyen d’un relais à auto-maintien, solution fréquemment adoptée dans les environnements industriels.

Le principe consiste à maintenir l’alimentation du circuit tant que le relais reste excité, l’opérateur pouvant interrompre cette excitation via un bouton poussoir d’arrêt.
Cette architecture garantit la sécurité fonctionnelle du dispositif tout en simplifiant le comportement de remise en service.

Sélection du mode Auto / Manuel

Un commutateur à deux positions permet de choisir entre un mode automatique et un mode manuel. Ce choix conditionne la provenance des signaux de commande :

  • En mode manuel, les boutons opérateur commandent directement les relais gérant le sens de rotation.
  • En mode automatique, ces mêmes relais sont pilotés par l’unité d’automatisation (qui sera intégrée dans une phase ultérieure du projet).
  • BP_ON : Bouton poussoir de commande du relais K1
  • K1 : Relais dont un contact est utilisé pour assurer son auto-maintien. Le deuxième contact est utilisé pour mettre sous tension tout le reste du montage.
  • BP_OFF : Bouton poussoir de coupure de l’alimentation du relais K1.
  • Led_ON : Led dont l’allumage dépend du deuxième contact du relais K1.
  • SWITCH AUTO/MAN : Commutateur permettant d’alimenter soit les relais K2, K3 et la Led Led_AU, soit la Led Led_MA seule.
  • K2 : Relais dont un des contacts autorise la mise sous tension de la suite du montage.
  • K3 : Relais dont les contacts aiguilles vers l’interface de puissance du moteur, les commandes manuelles ou les commandes automatiques.
  • Led_AU : Led dont l’allumage est commandé par le commutateur SWITCH AUTO/MAN en position AUTO.
  • Led_MA : Led dont l’allumage est commandé par le commutateur SWITCH AUTO/MAN en position MAN.

Sélection du mode Switch / Pulse

La sélection entre le mode switch et le mode pulse est assurée par un commutateur à 2 positions.

  • SWITCH PULSE/SWITCH : Commutateur permettant d’alimenter soit K4 et Led_Pulse, soit K5 et Led_Switch.
  • K4 : Relais dont un contact va autoriser les commandes manuelles en mode pulse.
  • K5 : Relais dont un contact va autoriser les commandes manuelles en mode switch.
  • Led_Pulse : Led dont l’allumage est commandé par le commutateur en position Pulse.
  • Led_Switch : Led dont l’allumage est commandé par le commutateur en position Switch.

Switch & Pulse Commands

Les commandes manuelles en mode pulse sont assurées par des boutons poussoirs classiques. Il est nécessaire de maintenir l’appui sur le bouton poussoir maintenir la commande.

Les commandes manuelles en mode switch sont assurées par des boutons poussoirs à maintien de position. un premier appui bloque le bouton poussoir en position pour activer la commande. Un second appui, libère la position du bouton poussoir est arrête la commande.

  • PB1_PULSE: Bouton poussoir de commande de la rotation du moteur dans un sens.
  • PB2_PULSE : Bouton poussoir de commande de la rotation du moteur dans l’autre sens.
  • PB1_SWITCH : Bouton poussoir à maintien de position pour commander la rotation du moteur dans un sens.
  • PB1_SWITCH : Bouton poussoir à maintien de position pour commander la rotation du moteur dans l’autre sens.

Controller commands

Les contacts du relais K3 permettent d’aiguiller vers le moteur, soit les signaux des commandes manuelles soit ceux des commandes automatiques.

LED_R1 : Led dont l’allumage est commandé par une commande pulse ou switch pour un même sens de rotation du moteur.

LED_R2 : Led dont l’allumage est commandé par une commande pulse ou switch pour un même sens de rotation du moteur.

DC Motor controller

L’interface de puissance qui assure le pilotage du sens de rotation du moteur à partir des signaux de commandes numériques manuelles ou automatiques est une carte électronique basée sur un L298N.

Maquette

Afin de valider ces choix, une maquette physique du circuit a été réalisée. Le câblage sur plaque expérimentale (protoboard) a permis :

  • de vérifier la cohérence des connexions ;
  • de confirmer la compatibilité électrique entre les éléments ;
  • d’effectuer une série de tests fonctionnels (mise sous tension, bascules de modes, commandes moteurs).

Cette démarche de prototypage intermédiaire est conforme aux bonnes pratiques de l’ingénierie électronique, permettant de déceler d’éventuelles incohérences avant la production d’un circuit imprimé ou l’intégration dans l’environnement mécanique définitif.

Test de fonctionnement

Cartes électroniques

Conclusion

Cette première itération électronique de la console de commande du diorama BATLab112 constitue une étape structurante du projet. Elle permet de valider l’ensemble des fonctions de base : gestion de la mise sous tension, sélection des différents modes de commande, pilotage du moteur de la plateforme rotative et évaluation de l’ergonomie opérateur.

L’architecture modulaire mise en place offre une marge significative pour les développements ultérieurs, notamment :

  • l’intégration d’un système de contrôle automatisé basé sur Arduino ou équivalent,
  • la mise en place d’un affichage en temps réel via un écran TFT 2,8’’,
  • la migration vers un câblage définitif en adéquation avec les contraintes mécaniques du diorama.

En ce sens, ce prototype représente un jalon essentiel dans la transition entre la conception préliminaire et la validation fonctionnelle du dispositif final, illustrant une démarche académique structurée et reproductible.

Voir aussi

Articles – Console de la commande

Articles – Conception des équipements industriels

Articles – Timeline du diorama

Pont roulant bipoutre – Prototype

Résumé :

Cet article présente la réalisation du prototype du pont roulant bipoutre du diorama pédagogique de la Batcave, à l’échelle 1/12, du projet BATLab112.

Actualisé :

Introduction

La réalisation du prototype du pont roulant bipoutre du diorama de la Batcave fait suite à la conception préliminaire de cet équipement.
Voir l’article …

Présentation générale

La structure du pont roulant est fabriquée en bois pour des raisons de facilité d’usinage, essentielle lors de cette phase de prototypage, et de maîtrise de l’impact environnementale du projet. Compte tenu des dimensions de certaines pièces constituant cet équipement, il n’était de toute façon pas envisageable de les imprimer avec une imprimante grand public. La perspective d’une fabrication en résine ou par impression professionnelle n’était pas non plus compatible avec le budget prévisionnel du projet.

Les pièces d’assemblage sont imprimées pour des raisons de faisabilité technique et de précision de fabrication. Les principaux sous-ensembles du pont roulant bipoutre sont assemblés par boulonnage (M2).

Les photos utilisées dans cet article ont été prises avant la phase de ponçage et de finition !

Vues de détails

Pièces en bois

Ces pièces ont d’abord été conçues sous le logiciel de modélisation 3D FreeCAD V19 pour être ensuite fabriquées par le 8FABLAB à Crest dans la Drôme.

Pièces d’assemblages

Ces pièces ont d’abord été conçues sous le logiciel de modélisation 3D FreeCAD V19 pour être ensuite imprimées par Benoit, membre de la communauté du projet BATLab112.

Platine d’assemblage poutre et sommier du pont roulant.

Deux platines d’assemblage sont collées à chaque extrémité des poutres. Ces trois pièces constituent un sous-ensemble. La platine permet le montage et démontage de ce sous-ensemble sur les sommiers du pont roulant par boulonnage.

Les contraintes de réalisation de cette pièce sont relatives à la précision d’impression ainsi que sa rigidité pour assurer un montage le plus ajusté possible.

Support de fixation des micros moteurs

Cette pièce est boulonnée via des tiges filetées ancrées dans le sommier. Sa forme permet de maintenir un micro moteur 6VDC. Un système de fixation supplémentaire reste à l’étude pour le moteur.

Les contraintes de réalisation de cette pièce sont relatives à la précision d’impression ainsi que sa rigidité pour assurer un maintien du moteur.

Plaque de protection

Cette pièce est boulonnée via des tiges filetées ancrées dans le sommier. Aucune contrainte particulière n’est requise pour la réalisation de cette pièce, destinée à protéger et maintenir en place l’axe de la roue libre. 

Test fonctionnel

Cette vidéo a été réalisée en mode expérimentale, à partir d’une structure principale incomplète. Son objectif était de montrer le fonctionnement général du pont roulant bipoutre.

Validation du design technique

Ce prototype doit tout d’abord permettre de s’assurer de la faisabilité technique du design issu de la conception préliminaire.

Conception préliminaire

Même si la plateforme rotative a fait l’objet d’une phase de conception préliminaire en 3D avec le logiciel FreeCad, ce prototype permet de faire des ajustements nécessaires suite aux contraintes d’assemblage rencontrées .

Prototype n°1

La fabrication des pièces principales en bois est satisfaisante même si leur poids reste important. Les différents éléments constituant les poutres du pont roulant ont été assemblés par collage. L’ensemble est plutôt solide et peut être manipulée avec un minimum de soin. La faisabilité technique de la structure est donc validée.

Validation du design fonctionnel

Ce prototype doit permettre de s’assurer de la fonctionnalité du design issu de la conception préliminaire.

Conception préliminaire

Le point fonctionnel critique sur ce prototype est la liaison pivot des axes de rotation des roues. Il est impératifs que ces liaisons soit la plus fluide possible pour autoriser l’utilisation de micro moteur. Le poids non négligeable de la structure en bois étant déjà un handicap il est impératif de contrôler cette fonction.

Prototype n°1

L’essieu d’entrainement est réaliser à partir d’un axe en aluminium, des roulements à billes de guidage et une poulie à gorge en V pour la roue. L’essieu de roue libre est réalisé à partir d’un axe et d’une poulie à gorge en V.

Validation de la résistance mécanique

Ce prototype doit permettre de contrôler la capacité de la plateforme à supporter le poids des deux bras robotiques ainsi que du Trolley sur lequel ils sont fixés. Cependant, les bras robotiques étant en cours de fabrication ce test n’a pu être réalisé.

Toutefois ce test a mis en évidence la trop grande souplesse de la structure supportant les rails de guidage du pont roulant.

Test de la motorisation du système

Ce prototype est aussi l’occasion de mettre en oeuvre la motorisation et la transmission du mouvement de rotation pour valider leurs dimensionnements issus de la conception préliminaire.

Transmission mécanique

Le couplage de l’axe des roues motrices avec les moteurs est assuré par un assemblage « en force » entre l’axe du moteur et l’axe de la roue.

La prochaine version de cette transmission devra assurer un couplage entre l’axe du moteur et celui de la roue plus durable.

Moteur

Ce test de motorisation a été réalisé avec deux micro-moteur 6V à courant continu et un variateur de tension. Ce variateur est utilisé pour contrôler de manière identiques les tensions d’alimentation des moteurs et ainsi ajuster leurs vitesses de rotation à des valeurs identiques. Le couple de ces moteurs est suffisant pour entrainer l’ensemble ; pont roulant + charge. Le test de motorisation est donc validé.

Conclusion

Même si ces premiers tests ont été réalisés dans des conditions non optimales, ce premier prototype du pont roulant bipoutre équipant l’atelier de la Batcave du projet BATLab112 permet de valider la conception préliminaire de cet équipement. Il est raisonnable de penser que le fonctionnement de cet équipement sera amélioré sur une structure complète et plus aboutie.

Les points d’amélioration identifiés seront pris en compte dans la prochaine version de ce prototype.

Voir aussi

Articles – Pont roulant bipoutre

Articles – Prototype

Architecture du Diorama – Prototype

Résumé :

Cet article présente la réalisation du prototype de la structure du diorama pédagogique de la Batcave, à l’échelle 1/12, du projet BATLab112.

Actualisé :

Mots clés :


Introduction

La réalisation du prototype de la structure du diorama de la Batcave fait suite à la conception préliminaire de cette structure.
Voir l’article …

Comme le montre la photo d’en-tête, le prototype de la structure du diorama est réalisée après les prototypes du pont roulant bipoutre et du pont élévateur quatre colonnes. Disposer de ces deux éléments permet de vérifier le bon agencement de la structure tout garantissant leurs intégration.
Voir l’article …

Présentation générale

Un diorama réalisé en bois

Le prototype de la structure est fabriqué entièrement en bois. Les raisons de ce choix sont systématiquement les mêmes pour tout le projet BATLab112. Tout d’abord pour des raisons mécanique. En effet, même si la mousse polyuréthane est souvent utilisée dans la fabrication de diorama, car légère et facile à travailler, le bois assure une meilleure rigidité compte tenu des dimensions et des besoins de précision de fabrication. Ensuite, pour la disponibilité de l’outillage nécessaire. Pour rappel le projet de diorama pédagogique est un projet développé sur fonds propres et donc dans un cadre financier serré. Enfin pour la faciliter d’approvisionnement comparé à des profilés en aluminium par exemple. Pour autant, la qualité des profilés en bois disponibles dans la région de développement du projet BATLab112 n’est pas toujours au rendez-vous, ce qui induit des imprécisions au montage.

Un diorama démontable

Les quatre piliers principaux sont vissés par dessous le plateau pour en garantir le démontage sans compromettre l’esthétique du diorama. Les traverses de renfort, elles aussi réalisée en bois, sont fixées par des tourillons en bois.

Voir aussi

Articles – Structure du diorama

Articles – Prototypes d’équipements industriels

Plateforme rotative – Prototype

Résumé :

Cet article présente la réalisation du prototype de la plateforme rotative du diorama pédagogique de la Batcave, à l’échelle 1/12, du projet BATLab112.

Actualisé :


Introduction

La réalisation du prototype de la plateforme rotative du diorama de la Batcave fait suite à la réalisation du prototype de cet équipement.
Voir l’article …

Présentation générale

La structure de la plateforme a été fabriquée en bois pour des raisons économiques mais aussi de facilité et rapidité de mise en oeuvre, le montage ayant pu être réalisé par simple collage. La plaque de couverture a été fabriquée en carton. La liaison pivot est assurée par un roulement à bille de type Lazy Susan, généralement utilisé pour des plateaux tournant de table.

La réalisation de ce premier prototype de la plateforme rotative de la Batcave du projet BATLab112 poursuit plusieurs objectifs. Il s’agit dans un premier temps de valider le design issu de la conception préliminaire et dans un deuxième temps de tester la motorisation de ce système.

  • Valider le design technique
  • Valider le design fonctionnel
  • Valider le design mécanique
  • Tester la motorisation du système

Vues de détails

Design technique

Ce prototype doit tout d’abord permettre de s’assurer de la faisabilité technique du design issu de la conception préliminaire.

Conception préliminaire

Même si la plateforme rotative a fait l’objet d’une phase de conception préliminaire en 3D avec le logiciel FreeCad, ce prototype permet de faire des ajustements nécessaires suite à des différences de côtes rencontrées lors de la réception de pièces manufacturées.

Prototype n°1

Les différents éléments ont été assemblés par collage. La fabrication de la structure en bois est plutôt satisfaisante. Même si les imperfections des pièces de bois utilisées ne permettent pas une précision au millimètre, cette structure présente une surface d’appui pour le plateau suffisamment plane. Elle est plutôt solide et peut être manipulée avec un minimum de soin. La faisabilité technique de la structure est donc validée.

Pour améliorer la précision de fabrication, une solution consisterait à rectifier toutes les pièces de bois avant assemblage ou d’opter pour des profilés aluminium.

Design fonctionnel

Ce prototype doit permettre de s’assurer de la fonctionnalité du design issu de la conception préliminaire.

Conception préliminaire

Le poids total, de la plateforme et du modèle réduit de la Batmobile, doit être le plus faible possible, pour autoriser l’utilisation d’un micro-moteur pour la rotation, afin d’être conforme avec les exigences d’échelle 1/12 du projet. Il s’agit donc ici de contrôler particulièrement si l’utilisation de matériaux légers est compatible avec l’assemblage du roulement à bille plus lourd.

Prototype n°1

L’assemblage de la structure en bois sur le roulement à billes de type Lazy Susan est réalisé grâce à 1 cercle de carton. Ce cercle est collé sur la structure. Les pions (en blancs sur la photo) fixent l’ensemble sur le roulement à billes. Cet assemblage est satisfaisant pour solidariser la structure en bois avec la couronne extérieure du roulement à billes. Il autorise la rotation de l’ensemble par rapport à la couronne intérieure. Le design fonctionnel est donc validé.

Une amélioration consisterait à réaliser le cercle d’assemblage entre la structure en bois et le roulement à billes dans un matériau plus rigide que du simple carton d’emballage ce qui éviterait les éventuelles déformations.

Résistance mécanique

Ce prototype doit permettre de contrôler la capacité de la plateforme à supporter le poids du modèle réduit de la Batmobile.

Conception préliminaire

Le plateau de la plateforme doit être d’une épaisseur très mince (inférieure à 2mm), pour des raisons de cohérence avec l’échelle 1/12 du projet. Il est nécessaire de s’assurer d’une part que sa réalisation puisse se faire dans un matériau suffisamment léger (ici du carton) pour ne pas rendre l’ensemble trop lourd pour la capacité des moteurs du pont élévateur et de la plateforme. D’autre part, il est aussi nécessaire de s’assurer que ce plateau ne se déforme pas sous le poids du modèle réduit de la Batmobile.

Prototype n°1

Le plateau de la structure est découpé dans une plaque de carton d’emballage d’épaisseur 1mm. Dans un premier temps, ce plateau est simplement posé sur la structure en bois. L’ensemble structure et plateau supporte tout à fait le poids du modèle réduit de la Batmobile. Le plateau ne se déforme pas sous le poids de la Batmobile. L’architecture de la structure de la plateforme associé à un plateau de faible épaisseur est donc validée.

Une amélioration consisterait à réaliser le plateau par découpe laser pour obtenir une découpe plus précise.

Motorisation

Ce prototype est aussi l’occasion de mettre en oeuvre la motorisation et la transmission du mouvement de rotation pour valider leurs dimensionnements issus de la conception préliminaire.

Transmission mécanique

L’engrenage de transmission est réalisé avec une poulie montée sur l’axe du moteur et une courroie GT2 5mm entourée autour du diamètre extérieur du roulement à billes. La courroie n’a pas été collée mais juste maintenue par du ruban adhésif. Le moteur est lui aussi simplement maintenu par du ruban adhésif contre un des supports provisoires de la plateforme. Le test est concluant malgré un montage sommaire. Cependant, ce montage ne permet pas de réaliser une rotation complète de la plateforme à cause de la présence du ruban adhésif.

La prochaine version de cette transmission devra intégrer le collage définitif de la courroie ainsi qu’une fixation plus appropriée du moteur.

Moteur

Ce test de motorisation a été réalisé avec un micro-moteur 6V à courant continu et un variateur de tension. Ce variateur est utilisé pour contrôler la tension d’alimentation du moteur et ainsi ajuster la vitesse de rotation de la plateforme. Le couple du moteur associé au rapport de réduction de l’engrenage suffit pour entrainer l’ensemble ; plateforme et modèle réduit de la Batmobile. Le test de motorisation est donc validé.

Validation fonctionnelle

Conclusion

Ce premier prototype de la plateforme rotative de la Batmobile équipant l’atelier de la Batcave du projet BATLab112 permet de valider la conception préliminaire de cet équipement. Les points d’amélioration identifiés seront pris en compte dans la prochaine version de ce prototype.

Voir aussi

Articles – Plateforme rotative